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Executive Summary 
 
A group at the Energy Efficient Buildings Hub is researching the links between energy efficiency 
and occupant behavior, and in addition to performing fieldwork and experiments, it has also 
completed the computer simulation modeling activities summarized in this report. The modeling 
work continues, but this report provides a useful snapshot of its current state. The modeling work 
provides a consistency check on the empirical work, while also opening up new ways to bring 
insights about human behavior to the building design process. The modeling framework used in 
this report connects commercially available building information modeling (BIM) software to a 
novel tool that simulates occupant behavior.  
 
Fieldwork confirms that occupant behavior is an important consideration in the design of 
advanced energy retrofits (AERs) in commercial buildings for three key reasons. First, occupants 
determine the acceptability of retrofits and resist changes that decrease their comfort or make 
additional demands on their time and attention. Second, occupants sometimes respond to changes 
in mal-adaptive ways, such as by bringing in a personal space heater that offsets central system 
savings achieved by the retrofit. Finally, if occupants gain access to enabling technology and 
appropriate incentives, they may supportively perform energy-saving behaviors. By capturing 
these insights about the likely interactions between people and building systems in a simulation 
modeling framework, designers can explore the “what-if” space thoroughly before carrying out 
the retrofit.  
 
The modeling framework incorporates the EnergyPlus building energy performance model and 
drives it using the OpenStudio plug-in to the Sketchup building geometry design tool. The 
human agent submodel is programmed in the NetLogo agent-based modeling environment, and a 
connective tissue of Java code links the submodels together into a dynamic simulation system.  
 
Three relatively new multi-story commercial buildings in the Greater Philadelphia region with 
gross floor areas in the 75,000 – 100,000 square foot range have been modeled. One houses a 
single tenant and the other two are multi-tenanted. The two multi-tenanted buildings are LEED 
certified and include a variety of innovative daylighting and thermal comfort features. The 
single-tenanted building is undergoing an advanced energy retrofit. The buildings and their 
occupants were studied in detail during a year of fieldwork. The modeling framework was 
calibrated to produce credible simulations of each building. The modeling team simulated 
several scenarios for each building to demonstrate the range of questions that designers can 
explore. These included the following: 

 Load shedding was modeled for the single-tenanted building, and the simulation showed 
that occupants barely noticed, thereby bolstering the owner’s confidence that a real event 
would not alienate the tenant. 

 In a multi-tenanted building, a tenant who pays their own energy bill uses less energy 
than one who does not. Occupants in the cost-conscious tenant space must engage in 
regular activities to try to maintain comfort. 

 In a multi-tenanted building, when much control is centralized into the hands of the 
building operator, occupants expend little effort in trying to maintain comfort. When 
control is decentralized, more dynamism enters the system because occupants disagree on 
optimal settings for thermostats, overhead lights, and window blinds.  
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 In a multi-tenanted building, the introduction of enabling technologies including 
dashboards and serious games yields modest building-wide energy savings while 
reducing the frequency with which occupants adjust thermostat and other controllable 
building features.  

 
Key recommendations for practice include the following: 

 Consider including representations of occupant behavior in BIMs for both AERs and new 
buildings.  

 Pursue “behaviorally robust” building and AER design strategies that complement the 
current focus on high-performance designs. 

 Pay particular attention to the usability issues associated with design innovations, and 
consider the user-friendliness of each AER. 

 Take advantage of enabling technologies such as dashboards and serious games that open 
up opportunities for occupants to carry out energy-saving behaviors.  

 
Recommendations for future research include: 

 Develop less costly ways to collect occupant perception and behavior data for use in 
calibrating behavioral models. 

 Optimize the computer code to speed up the simulation process and allow the occupant 
behavior module to become an add-in to commercial BIM software.  

 Extend this modeling approach to the domains of interior design and urban design.  
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Introduction 
 
Occupants play several roles in determining a building’s energy use and they can have a strong 
influence on the success of advanced energy retrofits (AERs). Occupants directly use energy by 
operating computers, task lights, and other locally controllable equipment that we categorize as 
plug loads within buildings. Occupants indirectly use energy as beneficiaries of heating, 
ventilating, and air-conditioning (HVAC) systems, lighting systems, security systems, elevators, 
water systems, and other building services. Engineers and architects design building services to 
reflect their understanding of what occupants want, and building operators manage these systems 
in ways that they hope balance the twin objectives of low costs and high comfort. Occupants can 
influence the performance of building systems in an active sense, as they adjust thermostats or 
operate windows and blinds, and in a passive sense as occupancy schedules and usage patterns 
change over time (Brager and de Dear 1998, Fabi et al 2012, Masoso and Grobler 2010). The 
successful rollout of AERs depends significantly on whether occupants accept the changes (van 
den Wylenberg 2012, Indraganti et al 2013, Toftum et al 2009, Karjalainen and Lappalainen 
2011).  
 
The literature shows that occupant behavior can measurably affect a building’s energy 
performance. In conventional office buildings, occupants typically focus more on doing their 
jobs than on saving energy (Lo, Peters and Kok 2012). In high-performance commercial 
buildings, the very innovations that contribute to technical performance may not be 
comprehensible to building occupants, raising usability issues that threaten ultimate energy 
savings (Brown and Cole 2011, Wagner et al 2007). In conventional residential buildings, 
cooling and lighting are the parameters most strongly affected by occupant behavior, whereas in 
high-performance residential buildings, it is the random variations in occupants’ schedules and 
their use of plug loads that dominate (Brandemuehl and Field 2011, Emery et al 2006). 
Physiological factors such as gender, psychological factors such as perceptions of personal 
control, and availability of adaptive behaviors such as adjusting clothing all have effects on both 
perceived comfort and building-wide energy use (Karjalainen 2007, Karjalainen 2009, Newsham 
1997). Occupant influences on building energy are the same order of magnitude as technological 
factors, making behavioral robustness an increasingly important design criterion (Schweiker and 
Shukuya 2010, Hoes et al 2009).  
 
Simulation modeling has become an essential design tool in recent decades, as computers and 
specialized software have found their way onto desktops in architectural and engineering firms. 
Building information modeling (BIM) has been a regular part of the professional curriculum for 
more than a decade and the industry has developed standards that enable file sharing across firms 
throughout the building industry. BIM is also entering the building management system (BMS) 
sphere, where it promises to support more sophisticated management and control strategies.  
 
Tools that simulate building energy use have been widely available since the 1970s and energy 
simulations have become an essential part of both design and regulatory compliance processes. 
Building energy performance models incorporate important information about occupant 
behavior, including occupancy schedules, thermal comfort setpoints, internal heat gains due to 
occupant activities, and target illumination levels. However, they also miss important 
information such as the variation across occupants in preferred temperatures and lighting levels, 
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the range of adaptive behaviors occupants perform as they respond to changing comfort 
conditions, and the amount of effort required of occupants to become effective users of 
buildings, especially those with novel or complex features (Daum et al 2011, Bourgeois et al 
2006, Galasiu and Veitch 2006). For example, designers of thermally activated building control 
systems need to understand the linked adaptive responses of occupants before they can 
understand the overall dynamic performance of the building-occupant system (Sourbon and 
Helsen 2011, Saelens et al 2011). Designs intended to increase personal control, such as 
task/ambient air conditioning systems, need similar verification (Akimoto et al 2010).    
 
Building energy performance modelers have explored various strategies for representing the 
essential elements of occupant behavior. The default strategy is to drive a deterministic 
engineering physics model with average values for occupant-related variables. Deterministic 
tools can also be used as modeling engines that explore a variety of scenarios embodying 
alternative occupancy schedules, temperature set points, and other design assumptions. Modeling 
engines can perform Monte Carlo analysis (Pfafferott and Herkel 2007). Specific variables can 
be treated as stochastic instead of deterministic, thereby allowing exploration of what variable 
behaviors and preferences might mean for optimal design choices (Virote and Neves-Seva 2012, 
Herkel et al 2008). Specific variable values can be modeled explicitly, such as by representing 
occupancy schedules as Markov processes in which the variable value in any particular hour 
depends partly on what it was in a previous hour (Page et al 2008). Multiple user profiles can be 
developed to characterize succinctly the variations in occupant behavior (Santin 2011). Data 
mining (Yu et al 2011) and behavioral algorithms that represent reduced-form formulations of 
complex behaviors can make the prospect of multiple simulations more manageable (Rijal et al 
2008). Bayesian networks provide a useful way to manage the complexity of the coupled 
building-occupant system (Jensen et al 2009). Researchers are now exploring alternative 
artificial intelligence (AI) approaches that range from machine learning that correlates behavioral 
inputs with building-wide outputs without attributing causality, to agent-based models (ABMs) 
that explicitly simulate specific theories and processes of human behavior (Andrews et al 2011, 
Klein et al 2012). The current research adopts an agent-based modeling approach. 
 
ABM is a computer simulation framework that has been greatly facilitated by the advent of 
object-oriented programming languages such as Java. In an ABM, software objects interact with 
one another and their external environment according specific rules. These rules govern their 
interactive behaviors as well as their internal workings. The rules provide a coherent basis for 
simulating many phenomena such as the behavior of molecules in a fluid, the behavior of 
predators and prey in an ecosystem, the behavior of pedestrians on a city street, and the behavior 
of occupants in a commercial office building. In these examples, the ABM can reveal emergent 
system properties (turbulent flow, population crashes, sidewalk congestion, building-wide energy 
use). Among various approaches for modeling human behavior, ABMs are particularly useful 
when agents are heterogeneous in their preferences and capabilities, have bounded rationality, 
and respond to changing information. Standard ABM platforms are emerging which reduce the 
programming burden for potential developers.   
 
The intended benefits of adopting an ABM approach to the representation of occupant behavior 
in buildings are both practical and aspirational. In practical terms, it is empirically evident that 
building occupants have heterogeneous preferences and adaptive responses to changing comfort 
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conditions. If detailed data are available from fieldwork or experimentation, then calibration of 
an ABM is a straightforward exercise in populating agent characteristics from occupant survey 
responses and occupant-specific observations. The ABM framework also has practical value for 
simulating behavior-change strategies such as occupant education, energy information feedback, 
and social persuasion that derive from psychological, that is, individual-based behavioral 
theories rather than theories based on aggregate economic behavior. The ABM approach is also 
aspirational because it becomes more useful as computing power increases and “big” data 
become more available.  
 
This report shares results of a modeling effort that characterizes occupant behavior in existing 
commercial buildings under a variety of conditions. A major purpose of the modeling work is to 
capture insights harvested from a set of case studies of single- and multi-tenanted buildings 
undergoing AERs. Once captured within a model, users can apply these insights to future AER 
projects in a more direct way than they could by simply reading historical case studies.  
 
The rest of this report introduces the modeling framework, shares details from the case study 
buildings and their occupants, reports illustrative modeling results, discusses the results, and 
draws conclusions and recommendations for practice and for future research. The modeling work 
continues but this report provides a useful snapshot of its current state. Models discussed here 
may be downloaded from greenbuilding.rutgers.edu.  
 

Modeling Framework 
 
There are three motivations for creating this framework for simulating occupant behavior. We 

know empirically that behavior 
affects building performance 
even as building performance 
affects occupant behavior, hence 
it may be valuable to model this 
dynamic system (Figure 1). The 
framework should also be helpful 
for checking the consistency of 
empirical work in case study 
buildings. Finally, it could prove 
to be helpful for evaluating the 
usability of building designs 
including advanced energy 
retrofits.  
 
 
 
 
Figure 1: Coupled building-user system 

 
The modeling system requires several types of data, including detailed building design 
documentation; utility bills and other objective measures of building performance; surveys and 
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other empirical evidence regarding occupant perceptions, preferences, and behaviors; and 
exogenous assumptions to guide the formulation of scenarios (Figure 2).  
 

 
Figure 2: From fieldwork to modeling 

The modeling framework consists of several commercially available programming and 
simulation applications tied together with a connective tissue of Java code. The occupant 
behavior model is programmed in the NetLogo ABM environment (www.netlogo.org, Wilensky 
and Rand 2013). The building geometry is entered using Sketchup (www.sketchup.com). Details 
on building systems, schedules, and other factors are entered using a beta version of OpenStudio 
(openstudio.nrel.gov). The EnergyPlus modeling engine characterizes the energy performance of 
the building design (http://apps1.eere.energy.gov/bu ildings/energyplus/). The Eclipse Java 
programming environment manages the connective code (www.eclipse.org).  
 
The steps in building a complete model include: 

1. Enter building geometry into Sketchup 
2. Enter buildings systems information into OpenStudio 
3. Create an EnergyPlus model of the building 
4. Calibrate the EnergyPlus model using utility bills and other objective data 
5. Enter occupant perception and behavior data into NetLogo 
6. Create an integrated NetLogo-EnergyPlus model of the building and its occupants 
7. Re-calibrate the integrated model using utility bills and occupant behavior data 
8. Specify what-if scenarios in NetLogo, then run integrated model and analyze the output 

 
The logic of the complete modeling system is summarized in Figure 3. It contains a building 
performance submodel that tracks and modifies the state of the indoor environment over time. It 

Building Data
(Architectural and 

Mechanical 
Drawings)

Google 
SketchUp Open Studio

Energy Plus

Occupant 
Behavior 
Simulation

Occupant 
Behavior 

Survey Data

Calibration 
Analysis

Building 
Geometry

HVAC 
Construction 
Lighting, Etc

Calibrated 
Building 
Models

NetLogo

Utility Bills

What‐if 
scenarios



Simulating Occupant Behavior  January 2013 
 

9 

contains a human agent submodel that simulates individual and shared decisions of occupants as 
they experience and react to changing environmental conditions. It includes a file documenting 
the current state of controllable and uncontrollable building features. Finally, it contains linked 
external models that perform detailed engineering and building physics calculations to simulate 
energy consumption lighting levels, and other results. This modeling framework was introduced 
in Andrews et al (2011) and extended in Andrews et al (2012).  
 

  
 
Figure 3: Modeling system logic 

Source: Andrews et al 2012 

 
The next level of detail in the human agent submodel is shown in Figure 4. The AI community 
has developed a procedurally-oriented model of human decision making called the Belief-
Desire-Intention (BDI) framework. This framework has been applied in a variety of modeling 
contexts that call for simulations of reasoned (rather than routinized) decision making (Norling 
2009). The standard BDI framework includes perception of the current environmental state, 
cognition that compares the current state to a desired state, deliberation that formulates an 
intention to remedy the discrepancy, planning that weighs alternative courses of action, and 
decision making that selects a preferred course of action. In the current application, this 
framework is enriched with elements from the Theory of Planned Behavior (Ajzen 1991) that 
offers psychological grounds for developing beliefs about the state of the environment and its 
controllability, beliefs about what is important in terms of value judgments, and a sensitivity to 
societal norms that may influence behavioral intentions. The enriched framework was introduced 
in Andrews et al (2011).  
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Figure 4: Belief-Desire-Intention Framework for simulation of occupant decision making 

Source: Andrews et al (2011) 

Usability is the main concept underlying the output metrics of the simulation modeling 
framework. This framework adopts the standard ISO definition (1998) as discussed in Andrews 
et al (2011): 
 

 Effectiveness: the probability that the technology performs effectively given the 
distribution of user behaviors (e.g., % achievement of target lighting level) 

 Efficiency: the ratio of the output (e.g., lighting services) of a system to its input (e.g., 
energy, $, time, effort, attention). 

 Satisfaction: the utility a user derives from a system (weighted function of attributes such 
as energy, $, effort) 
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Case Study Buildings 
 
The modeling framework was initially applied to stylized, simplistic, five-zone buildings, but it 
has since been extended to more detailed BIM representations of real, occupied commercial 
buildings in the Greater Philadelphia region. All are Class A, recently-built, multi-story office 
buildings between 50,000 and 100,000 gross square feet in size. This section introduces the 
buildings, each of which was the focus of fieldwork to determine its energy performance and to 
gauge occupant perceptions and behavior. Only summary details are provided here, see the field-
study reports for additional information.  
 

Building #1: Single Tenant 
 
The first case study building is a three story office building near Philadelphia that was 
constructed in 2004, and has 76,692 gross square feet of floor area and 227 occupants. It is 
owned by a real estate investment trust and, although built as a multi-tenant site, currently 
functions as a single-tenanted building. The EnergyPlus model for this building was developed 
and calibrated by another EEB Hub research team whose report shares full details (Xu and 
Wagner 2012).  
 

 
 
Figure 5: Case Study Building #1 (a) exterior, (b) interior 
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Building #2: Multiple Tenants 
 
The second case study building was built in 2005 as a speculative multi-tenant office 
development of 76,350 square feet.  It achieved a green building certification of LEED Platinum 
Certification – Core and Shell v 1.0 pilot in 2006, and has an EnergyStar Portfolio Manager 
score of 79. Occupancy of tenanted spaces has exceeded 90% during the study period, with the 
total number of occupants in the range of 200. Unusual features of this building include 
extensive daylighting, a four-story atrium, and a high-efficiency HVAC system. See Senick et al 
(2012) for further details.   
 

 
 

 
 
Figure 6: Case Study Building #2, (a) photograph, (b) BIM representation 
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Building #3: Multiple Tenants 
 
The final case study building discussed in this report was built in 2009 as a speculative, multi-
tenanted office building with a floor area of 95,621 square feet. It earned LEED Gold 
Certification – Core and Shell v 1.2 in 2009 and its ENERGY STAR Portfolio Manager score is 
78 once a non-office energy user (healthcare facility) is removed from the tally. It includes a 
significant level of building automation, performs a substantial amount of daylight harvesting, 
includes a four-story atrium, and uses a high-efficiency HVAC system. The building’s tenanted 
areas were 100% occupied during the fieldwork period and included approximately 250 
occupants. See Senick et al (2012) for further details. 
 

 
 

 
 

Figure 7: Case Study Building #3, (a) photograph, (b) BIM representation 
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Illustrative Modeling Results 
 
This section shares illustrative modeling results that communicate key findings from a wide 
variety of simulations that the research team performed. First, this section discusses the 
calibration of the EnergyPlus models to utility bills and then it presents results of the coupled 
building-occupant behavior modeling system.  
 

Calibration 
 
The calibration of the Building #1 EnergyPlus model to utility bills was performed by another 
research team and the results are summarized in Xu and Wagner (2013). The model closely 
replicates the normalized utility bills.  
 
Calibration of the EnergyPlus model of Building #2 proceeded in two steps. First, the modeled 
floor area was confirmed to be within 2.5 % of the floor area of the as-built building. Second, the 
measured annual energy consumption of 62 kBtu/sq.ft/year compared favorably with the 
modeled energy use of 69 kBtu/sq.ft/year, yielding an acceptable 11.3% error.  
 
For Building #3, the modeled floor area differed by 1.4% from the measured floor area. Modeled 
energy intensity excluding the healthcare tenant was 77 kBtu/sq.ft/year, yielding a 0% error 
relative to the measured energy use excluding that tenant.  
 
To test the validity of the models for Buildings #2 and #3, the modeling team performed 20 
sensitivity runs for each building that explore a variety of plausible redesign scenarios. Results 
are summarized in Table 1, and they suggest that the models are reasonable representations of 
these buildings.  
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Table 1: Sensitivity Analyses of Simulation Models of Buildings #2 and #3   

 
Scenario Change in Annual Energy 

Use from Baseline 
Building #2 Building #3 

Baseline (2009 ASHRAE 90.1 construction) 0% 0% 
Pre-1980-era construction (standard Commercial Building Energy Consumption 
Survey construction materials, common pre 1980's lighting (20  Watts/m^2 ) and 
average pre 1980 medium office building electric equipment use (11 Watts/m^2 ). 

+41% +56% 

1980 to 2004-era construction (standard CBECS construction materials, average 
lighting load (17 Watts/m^2 )  and average medium office building electric 
equipment use (11 Watts/m^2 ) for the time period 1980-2004). 

+26% +30% 

Single Pane (all exterior windows are single pane 3mm windows). +3% +13% 
Triple Pane (all exterior windows are triple pan windows with three 3mm panes each 
separated by 13mm of air). 

-3% -8% 

Double Pane Argon (all exterior windows are double pane 3mm glass separated by 
13mm of argon gas). 

-3% -3% 

Triple Pane Argon (all exterior windows are triple pane 3mm glass separated by 
13mm of argon gas). 

-6% -9% 

Double Reflective Argon (all exterior windows are double pane 3mm glass separated 
by 13mm of argon gas with a reflective coating). 

-4% -6% 

Triple Pane low-e Argon (all exterior windows are triple pane 3mm glass separated 
by 13mm of argon gas.  The glass has both low thermal emissivity and  reflective 
properties). 

-6% -12% 

Half Lights (ses 5 Watts/m^2   instead of the standard 10 Watts/m^2 for the 
building's lighting load). 

-13% -10% 

Quarter Lights (2.4Watts/m^2   instead of the standard 10 Watts/m^2 for the 
building's lighting load). 

-17% -13% 

Floor Insulation (triple the amount of floor insulation on external and ground contact 
surfaces). 

-1% -5% 

Interior Insulation (triple insulation on all interior walls, floors and ceilings). -3% -5% 
Roof Insulation (triple the amount of roof insulation on external surfaces). -4% -5% 
Wall Insulation (triple the amount of wall insulation on external surfaces). -4% -5% 
Wall and Roof Insulation (triple the amount of wall and roof insulation on external 
surfaces). 

-4% -6% 

Wall, Roof and Floor Insulation (triple insulation on all exterior surfaces). -4% -6% 
Wall, Roof and Floor Insulation with Triple Argon (triple the standard amount of  
insulation on all exterior surfaces coupled with triple pane argon windows. 

-7% -13% 

Wall, Roof and Floor Insulation with Triple Argon and Half Lighting (triple the 
standard amount of insulation on all exterior surfaces coupled with triple pane argon 
windows and uses 4.8 Watts/m^2   for the buildings lighting load). 

-14% -21% 

More Thermal Zones (more localized HVAC thermal zones as opposed to only one 
thermal zone per floor).   

-3% -6% 
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Building #1: Occupant Responses to Load Shedding 
 
In this pair of scenarios, occupants of the single tenanted building experience a load shedding 
event during a summer day. This is similar to a well-documented set of events that actually took 
place at this building, as reported in Xu and Wagner (2013) and Senick et al (2013). The hourly 
simulations cover a 24-hour period in midsummer. The first simulation assumes normal 
operations, whereas the second includes a late morning load shedding event. The simulation 
scope includes both thermal comfort and illumination levels. Thus, the range of sensations that 
occupants can perceive includes Too Hot, Thermally Neutral, Too Cold; and Too Bright, 
Illumination-Neutral, and Too Dim. The set of actions that occupants may take to adapt to 
changing thermal comfort conditions includes Do Nothing, Adjust the Thermostat, Turn On/Off 
a Personal Fan, Turn On/Off a Personal Space Heater, Add/Remove Clothing. For illumination, 
the set of possible adaptive actions includes Do Nothing, Adjust Window Blinds, Turn Task 
Light On/Off, and Turn Overlight On/Off.  
 
 

 
 
Figure 8: Building #1 Hourly Energy Use under Normal and Load Shedding Conditions 

 

 
 
Figure 9: Building #1 Average Hourly Indoor Air Temperature (F) under Normal and Load Shedding Conditions 
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Figure 10: Building #1 Average Hourly Occupant Discomfort Level under Normal and Load Shedding Conditions 

 

 
 
Figure 11: Building #1 Average Hourly Occupant Adaptive Effort Level under Normal and Load Shedding Conditions 

 

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Average	Discomfort	Level

Normal Load	Shedding

0
20
40
60
80
100
120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Average	Effort	Level

Normal Load	Shedding



Simulating Occupant Behavior  January 2013 
 

18 

 
 
Figure 12: Building #1 Count of Hourly Occupant Adaptive Responses to Improve Thermal Comfort under Load 
Shedding Conditions (blue = do nothing, red = adjust thermostat, green = use personal space heater) 

 

 
 
Figure 13: Building #1 Count of Hourly Occupant Adaptive Responses to Improve Illumination Levels under Load 
Shedding Conditions (blue = do nothing, red = use task light, green = adjust overhead light, purple = adjust window 
blinds) 

 
Figures 8-13 show that the load shedding event was barely perceptible to occupants. Although 
indoor air temperatures rose during the event, the adaptive behaviors of occupants did not show a 
dramatic shift. The story was similar for lighting. For both thermal comfort and lighting, the 
bigger adaptive responses were associated with normal daily building startup and operations.  
 
 
 
 

0

10

20

30

40

50

60

70

9 10 11 12 13 14 15 16 17 18 19

Thermal

Thermal_DoNothing Thermal_Thermostat Thermal_LocalHeater

0

20

40

60

80

9 10 11 12 13 14 15 16 17 18 19

Lighting

Light_DoNothing Light_TaskLight Light_OverheadLight Light_Blinds



Simulating Occupant Behavior  January 2013 
 

19 

Building #2 Misaligned Incentives in Multi‐tenanted Buildings 
 
One of the barriers to improved energy performance identified by fieldwork in multi-tenanted 
buildings is the problem of misaligned incentives. Tenants are often not sub-metered, or they 
may be charged for energy use on a pro-rata rather than measured basis. Even if the tenant 
company has signed a lease that makes it responsible for paying utilities, the actual bills may go 
to a distant headquarters office rather than to the local supervisor. In short, it is common to find 
that occupants of multi-tenanted buildings to not experience meaningful energy cost feedback. 
The following pair of simulations compares two building operation strategies: cost-minimizing 
versus comfort-maximizing (and effort-minimizing). The energy cost-minimizing strategy 
represents the case where tenants have well aligned incentives to save energy, whereas the 
comfort-maximizing strategy approximates the more prevalent situation of misaligned 
incentives. The simulations show hourly results for a winter day. 
 

 
 
Figure 14: Building #2 Winter Day Hourly Energy Use with Tenant Behavioral Strategies to Minimize Energy Cost (blue) 
and Maximize Comfort (While Minimizing Occupant Effort) (red) 

 

 
 
Figure 15: Building #2 Winter Day Average Hourly Indoor Air Temperature with Tenant Behavioral Strategies to 
Minimize Energy Cost (blue) and Maximize Comfort (While Minimizing Occupant Effort) (red) 
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Figure 16: Building #2 Winter Day Average Hourly Occupant Discomfort Levels with Tenant Behavioral Strategies to 
Minimize Energy Cost (blue) and Maximize Comfort (While Minimizing Occupant Effort) (red) 

 

 
 
Figure 17: Building #2 Winter Day Average Hourly Occupant Effort Levels with Tenant Behavioral Strategies to 
Minimize Energy Cost (blue) and Maximize Comfort (While Minimizing Occupant Effort) (red) 

 

 
Figure 18: Building #2 Winter Day Average Hourly Occupant Adaptive Responses under the Energy Cost Minimizing 
Tenant Behavioral Strategy  
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Figure 19: Building #2 Winter Day Average Hourly Occupant Adaptive Responses under the Comfort Maximizing (and 
Effort Minimizing) Tenant Behavioral Strategy  

As one might expect, the cost-minimizing strategy uses less energy, yields lower temperatures 
during most working hours, and decreases comfort relative to the more typical comfort-
maximizing strategy. Adaptive responses related to lighting differ dramatically between the two 
cases, with the comfort-maximizing (and effort minimizing) strategy relying heavily on task and 
overhead lights, while the cost-minimizing strategy harvests more daylight, avoids the use of 
overhead lights, and requires regular adjustments of lights and blinds by occupants. 
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Building #3 Misaligned Incentives in Multi‐tenanted Buildings 
 
The same scenario was replicated in Building #3 which is newer, larger, has more exterior glass, 
and different occupants than Building #2. Results differ in their details, as shown below. 
 

 
Figure 20: Building #3 Winter Day Hourly Energy Use with Tenant Behavioral Strategies to Minimize Energy Cost (blue) 
and Maximize Comfort (While Minimizing Occupant Effort) (red) 

 
 

Figure 21: Building #3 Winter Day Average Hourly Indoor Air Temperature with Tenant Behavioral Strategies to 
Minimize Energy Cost (blue) and Maximize Comfort (While Minimizing Occupant Effort) (red) 
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Figure 22: Building #3 Winter Day Average Hourly Occupant Discomfort Levels with Tenant Behavioral Strategies to 
Minimize Energy Cost (blue) and Maximize Comfort (While Minimizing Occupant Effort) (red) 

 

 
 
Figure 23: Building #3 Winter Day Average Hourly Occupant Effort Levels with Tenant Behavioral Strategies to 
Minimize Energy Cost (blue) and Maximize Comfort (While Minimizing Occupant Effort) (red) 
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Figure 24: Building #3 Winter Day Average Hourly Occupant Adaptive Responses under the Energy Cost Minimizing 
Tenant Behavioral Strategy  

 

 
 
Figure 25: Building #3 Winter Day Average Hourly Occupant Adaptive Responses under the Comfort Maximizing (and 
Effort Minimizing) Tenant Behavioral Strategy  
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much more likely to adjust their clothes to improve comfort than is the case in Building #2, and 
they do not choose to use personal space heaters.  
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Building #2 Locus of Control 
  
One of the challenges identified in fieldwork on occupant satisfaction in multi-tenanted buildings 
is confusion over the locus of control, that is, understanding who has control over which systems. 
The following simulations in Building #2 examine three cases: temperature, overhead lights, and 
window blinds are controlled by (1) the building operator, (2) a properly-incentivized tenant who 
minimizes costs, and (3) majority vote of the occupants within each zone. In all three cases, 
occupants directly control their task lights and plug loads. The simulations show hourly results 
for a winter day. 
 
 

 
 
Figure 26: Building #2 Winter Day Average Hourly Energy Use under majority vote of occupants on central temperature 
and lighting controls (red), cost-minimizing tenant’s control (blue), and building operator’s control (green).   
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Figure 27: Building #2 Winter Day Average Hourly Indoor Air Temperature under majority vote of occupants on central 
temperature and lighting controls (red), cost-minimizing tenant’s control (blue), and building operator’s control (green).   

 

 
 
Figure 28: Building #2 Winter Day Average Hourly Occupant Discomfort Levels under majority vote of occupants on 
central temperature and lighting controls (red), cost-minimizing tenant’s control (blue), and building operator’s control 
(green).   
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Figure 29: Building #2 Winter Day Average Hourly Occupant Effort Levels under majority vote of occupants on central 
temperature and lighting controls (red), cost-minimizing tenant’s control (blue), and building operator’s control (green).   

 

 
 
Figure 30: Building #2 winter day hourly occupant adaptive responses under majority vote of occupants on central 
temperature and lighting controls.   
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different than in the two other scenarios, but indoor air temperatures are higher and occupant 
discomfort levels are lower.  
 

 
 
Figure 31: Building #2 winter day hourly occupant adaptive responses under cost-minimizing tenant’s control of central 
temperature and lighting.   

 

 
 
Figure 32: Building #2 winter day hourly occupant adaptive responses under building operator’s control of central 
temperature and lighting.   

When a cost-minimizing tenant representative is in charge, average discomfort is a little higher 
than in other scenarios, but little else changes. Finally, when occupants use a majority vote to set 
the thermostat and other features that are not personally controllable, much dynamism is 
introduced into the building-occupant system.  
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Building #2 Occupant Engagement Using Dashboards and Serious Games 
 
Occupant feedback is a potentially powerful way to encourage energy-saving behavior. This pair 
of scenarios provides occupants with information about their energy consumption, personally 
and building-wide. These scenarios approximate the field experiments with dashboards and 
serious games conducted by the EEB Hub in Fall 2012. The actual field experiments addressed 
only personally-controllable plug loads, whereas these simulations assume a level of control of 
the full range of energy-using equipment. Shown are a scenario without any occupant feedback 
tools deployed, and one with two such tools. In both cases, occupants use a majority vote to 
determine the appropriate thermostat setting, overhead light setting, and window blind setting for 
each zone. The simulations show hourly results for a winter day.  
 

 
 

Figure 33: Building #2 Winter Day Average Hourly Energy Use under majority vote of occupants on central temperature 
and lighting controls with feedback to occupants (blue) and without feedback (red).   

 

 
 

Figure 34: Building #2 winter day average hourly indoor air temperature under majority vote of occupants on central 
temperature and lighting controls with feedback to occupants (blue) and without feedback (red).   
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Figure 35: Building #2 winter day average hourly occupant discomfort level under majority vote of occupants on central 
temperature and lighting controls with feedback to occupants (blue) and without feedback (red).   

 

 
 
Figure 36: Building #2 winter day average hourly occupant effort level under majority vote of occupants on central 
temperature and lighting controls with feedback to occupants (blue) and without feedback (red).   
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Figure 37: Building #2 winter day hourly occupant adaptive responses under majority vote of occupants on central 
temperature and lighting controls with feedback to occupants.   

 

 
 
Figure 38: Building #2 winter day hourly occupant adaptive responses under majority vote of occupants on central 
temperature and lighting controls without feedback to occupants.   

Providing feedback to occupants yields a very modest decrease in building-wide energy use and 
no visible change in indoor air temperatures. Feedback seems to reduce occupant discomfort and 
effort levels. The one visible change in adaptive behaviors is that occupants receiving feedback 
less often adjust the thermostat.  
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Recommendations for Practice and Future Research 
 
This project has demonstrated that a coupled building-occupant modeling system can be 
calibrated to data from field studies of real buildings, and used to explore energy performance 
challenges especially associated with multi-tenanted buildings. The scenarios included in this 
report are a small sample of the possibilities. Readers are welcome to download the models and 
try out additional scenarios themselves at greenbuilding.rutgers.edu.  
 
Key recommendations for practice include the following: 

 Consider including representations of occupant behavior in BIMs for both AERs and new 
buildings.  

 Pursue “behaviorally robust” building and AER design strategies that complement the 
current focus on high-performance designs. 

 Pay particular attention to the usability issues associated with design innovations, and 
consider the user-friendliness of each AER. 

 Take advantage of enabling technologies such as dashboards and serious games that open 
up opportunities for occupants to carry out energy-saving behaviors.  

 
Recommendations for future research include: 

 Develop less costly ways to collect occupant perception and behavior data for use in 
calibrating behavioral models. 

 Optimize the computer code to speed up the simulation process and allow the occupant 
behavior module to become an add-in to commercial BIM software.  

 Extend this modeling approach to the domains of interior design and urban design.  
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