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A B S T R A C T

This paper investigates factors explaining the adoption of energy-efficient heating, cooling, window, and

lighting technologies in U.S. commercial buildings. It presents multinomial logit models of technology

adoption using the 2003 Commercial Buildings Energy Consumption Survey microdata set, examining,

first, fundamental building components, and, second, energy-efficient adaptations. Key findings are that

the choice of fundamental building components is strongly influenced by locational factors, the activities

that are expected to take place in the building, and building-specific characteristics. Lighting technologies

are an exception, and are poorly explained by these factors. By contrast, energy-efficient heating, cooling,

window, lighting, and control adaptations appear to share common drivers, and are more likely to be

adopted in newer, larger, more energy-intensive, owner-occupied buildings. These are the buildings that

can best afford the up-front costs of innovation, which is often a design-intensive process. Absent policy

interventions, the energy-efficient adaptations are unlikely to diffuse rapidly to the rest of the

commercial building stock.
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1. Introduction

Commercial buildings are complex assemblages of architec-
tural, structural, mechanical, electrical and other elements that
form distinct systems within integrated building designs. Indeed,
the assembly of discrete technological components into systems is
the key feature of the design process. The technological options
change over time, and the adoption of new technologies is possible
every time a building is built or renovated. Why do designers
preferentially adopt certain technologies?

Explaining technology adoption in this context requires an
appreciation of building design and innovation diffusion processes.
The process of building design is project-specific, and it considers
factors such as the activities and purposes of the occupants,
ownership arrangements, climate, and utility costs. The process of
innovation diffusion is economy-wide, and it involves both micro-
level adoption choices and macro-level market transformations.

This paper examines the adoption of so-called energy-saving
technologies within the U.S. commercial building stock. It does so
by analyzing the 2003 Commercial Buildings Energy Consumption
Survey (CBECS) microdata files and supplementary data for
evidence explaining the presence of specific technologies.
* Corresponding author. Tel.: +1 732 932 3822x721; fax: +1 732 932 2253.
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1.1. Commercial building design

Vitruvius offers timeless architectural design principles that
have been variously translated as ‘‘firmness, commodity and
delight’’ [1], and ‘‘construction, convenience and beauty’’ [2].
Durable, useful, and beautiful buildings remain our ideal, with
variations: modern architects pursue an aesthetic of functionality
[3], whereas postmodernists are willing to separate form and
function [4]. More recently, an ethical consideration of sustain-
ability has also entered the design lexicon [5].

The engineering design tradition also pursues beauty and
utility, form and function. It applies scientific principles and
knowledge to solve problems, typically framing the design task as a
search for an optimal solution given a set of binding constraints.
Design emphases vary, so that engineers may seek to expand the
range of solutions considered, make the search process more
efficient, or identify more elegant solutions.

Commercial building design shares much in common with the
engineering approach of optimizing performance within con-
straints. Many U.S. commercial building projects are treated as
investments that should earn a good rate of return without
imposing undue financial risks. The design process is thus subject
to a rigorous financial discipline that attempts to ensure adequate
performance at the lowest possible construction cost.

Some U.S. commercial building designs instead pursue high
performance and tolerate slightly higher initial construction costs
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[6]. Higher performance takes the form of a better occupant
experience and lower operating costs, both of which add value
from a life-cycle cost perspective. Technologies intended to deliver
higher performance are a particular focus of this study.

1.2. Technology adoption

Innovations diffuse to new users in a manner that typically
follows an S-curve pattern over time, proceeding from low initial
rates of adoption, to accelerating adoption rates, saturation, and
eventually, displacement by subsequent innovations. Explanations
of this pattern variously view diffusion as analogous to an
epidemic with information spillovers to non-users; a discrete
choice driven by users’ wealth, expectations, search and learning
costs, and switching and opportunity costs; or an information
cascade involving an early adopter’s stochastic and personally-
risky initial choice, followed by a more deterministic lock-in and
legitimation of the innovation, and then by a bandwagon effect
that sweeps the rest of the market along [7].

Rogers [8] identifies the key attributes that determine the rate
and extent of diffusion: these include the innovation’s advantage
over existing means, its compatibility with existing systems, its
absolute complexity, its trialability by potential users, and its
observability by potential users. These factors provide a starting
point for developing explanations of technology adoption within
commercial buildings.

Technologies adopted in commercial buildings presumably
have to demonstrate some relative advantage by being less costly
or delivering higher performance. They probably need to be
compatible with existing construction practices and not run afoul
of building codes or union rules. They probably need to be simple
to install and operate. It should be possible to try out the
technology without making a major investment relative to the
user’s total financial assets. Examples of these innovations
probably need to be visible near potential users to demystify
the technologies. The commercial building technologies studied
here have all passed the early-adoption threshold and can now be
considered mature, legitimated technologies that have diffused
successfully.

The primary objective of this paper is to identify the key factors
associated with the adoption of high-performance heating-
ventilating-air-conditioning (HVAC), window, lighting, and control
technologies within U.S. commercial buildings. The secondary
objective is to compare the drivers of adoption for fundamental
building technologies to these high-performance adaptations.
Expectations are that these explanatory factors include the
locational context, the principal activities of the presumed
occupants, and the characteristics of the building itself. Locations
have varied climates and energy prices that are likely to influence
which technological solutions are optimal in each context.
Occupant activities govern the basic building program and
determine such characteristics as owner occupancy, operating
hours and building floor area. Buildings vary in age and
construction characteristics.

2. Methodology

This section introduces the dataset and analysis method used to
meet the paper’s objective. It relies on the CBECS 2003 microdata
files and multinomial logistic regression analysis.

2.1. CBECS

Every four years, the U.S. Department of Energy conducts the
CBECS on a stratified national sample of commercial buildings.
Survey questions cover energy-related building characteristics,
and reported energy consumption and expenditures. The most
recent survey, conducted in 2003, received usable responses for
5215 buildings. The survey defines commercial buildings as
those that do not serve primarily residential, manufacturing/
industrial, or agricultural purposes. The publicly available
microdata file consists of individual survey responses stripped
of identifiers [9].

Principal building activities included in the CBECS dataset
include office, laboratory, nonrefrigerated warehouse, food sales,
public order and safety, outpatient health care, refrigerated
warehouse, religious worship, public assembly, education, food
service, inpatient health care, nursing, lodging, strip shopping mall,
enclosed mall, retail other than mall, service, other, and vacant
buildings. The most energy intensive activities are food service,
inpatient health care, and food sales ([9]: Table C3), but more floor
area is devoted to office, mercantile, warehouse and storage, and
education than to other activities ([9]: Table A1).

CBECS includes several data fields that are useful for the current
study. In addition to descriptors such as building age, region, size,
and principal activity, the survey also indicates whether buildings
incorporate specific technologies. Emerging technologies such as
solar panels are not considered here because their penetration into
the commercial building stock is so low. Eight categories of
innovations are analyzed in this paper. See EIA [9] for detailed
descriptions of these design alternatives. The first four are basic
building components, and the last four are related features
designed to improve energy efficiency. In the list below, their
current penetration into the U.S. commercial building stock on a
percent-of-floor-area basis is shown in parenthesis. Note that the
percentages add up to more than 100% because some buildings use
more than one technology. Basic building components include the
following:
� H
eating equipment types include furnaces (32%), boilers (36%),
packaged heating units (29%), individual space heaters (20%),
heat pumps (15%), district steam or hot water (9%), and other
heating equipment (5%).

� C
ooling equipment types include residential-type central air

conditioners (17%), heat pumps (18%), individual room air
conditioners (18%), district chilled water (6%), central chillers
(25%), packaged air conditioning units (52%), swamp coolers
(3%), and other (2%).

� W
indow types include single-layer glass (32%), multi-layer glass

(37%), a combination of both (17%), or no windows (4%).

� L
ighting types include incandescent (54%), standard fluorescent

(83%), compact fluorescent (38%), high-intensity discharge (29%),
halogen (25%), and other (�0%).

Features intended to promote energy efficiency include the
following:
� H
eating-ventilating-air-conditioning (HVAC) efficiency features
tracked in CBECS include variable-air-volume (VAV) systems
(39%), economizer cycles (42%), preventative HVAC maintenance
(87%), and energy management and control systems (EMCS)
(31%).

� H
VAC control strategies include time-clock thermostats (20%),

manually-reset thermostats (25%), and as part of an EMCS (31%).

� W
indow treatments include tinted window glass (42%), reflec-

tive window glass (12%), external overhangs or awnings (24%),
and skylights or atriums (18%).

� L
ighting efficiency features include daylighting (13%), day-

lighting sensors (4%), specular reflectors (36%), electronic
ballasts (65%), and control systems for lighting (7%).
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Together, these items provide a broad basis for examining the
penetration of innovative technologies within the U.S. commercial
building market.

2.2. Multinomial logistic regression analysis

This paper shares inferential analysis of the CBECS 2003 data
file developed using spreadsheet manipulations and the statistical
package SPSS 16. The analysis seeks to answer the following
question:
� W
hat are the factors that explain the adoption of specific energy-
efficient technologies within U.S. commercial buildings?

We use multinomial logistic regression analysis to predict
technology adoptions.

A cross-sectional analysis of current U.S. commercial buildings
can identify the correlates of specific technology adoptions. The
dataset indicates whether or not each technology has been adopted
in each sample building. We turn to multinomial logistic regression
to understand the factors leading to the adoption of specific
technologies because it can handle categorical dependent variables.

The dependent variable y in a binary logistic regression is
dichotomous, that is, it can take the value 1 with a probability p, or
the value 0 with probability 1 � p. The explanatory variables x in a
logistic regression analysis can take any form because logistic
regression makes no assumption about their distribution. They can
include a mix of continuous and categorical variables. The
relationship between the explanatory and dependent variables
is not a linear function as in the case of ordinary least squares
regression, instead, a logistic regression function uses the logit
transformation of p. Logistic regression uses maximum likelihood
estimation instead of minimizing least square differences.

Multinomial logistic regression allows the user to have a
dependent variable with three or more categories. Computation-
ally, it maximizes both the model’s fit overall, and for each category
of the dependent variable. Key diagnostic statistics include Chi2

tests of overall model significance and of the significance of each
explanatory factor, plus tests of the significance of coefficients
within the submodel for each category of the dependent variable. A
Nagelkerke pseudo R2 value is reported to give readers a quick, if
imprecise, feel for the overall explanatory power of the model.
Illustrative multinomial logistic regression results are shown in
Tables 1 and 2.

The tables include a great deal of information and their layout
needs explanation. Each column in the table reports results for a
different groups of technologies (space heating, space cooling,
etc.). The top portion of each column describes the performance of
the overall model for that group of technologies. The bottom
portion of each column shows the category submodels that use the
standard set of explanatory variables to predict the adoption of
specific technologies (furnaces, boilers, etc.). One specific technol-
ogy becomes the reference case, and the coefficients in the
category submodels then show the divergence from the reference
case.

To assess the predictive power of the overall model, the top
portion of each column shows the Nagelkerke pseudo R2 value,
which has a range of nearly 0–1 and is a measure of the
improvement in prediction gained from the null model (predicting
the dependent variable without any explanatory variables) to the
fitted model [10]. The greater the improvement, the higher the
pseudo R2. It is meant to be analogous to a standard R2 value used
in ordinary least squares regression (and which is unavailable in
discrete choice models).
A measure of the overall model’s goodness of fit is the
Likelihood Ratio Chi-Square test (abbreviated as Chi2 test of �2LL
(d.f.)) that at least one of the explanatory variables’ regression
coefficient is not equal to zero in the model. The Likelihood Ratio
Chi-Square statistic can be calculated by �2*L (null mod-
el) � (�2*L (fitted model)), where L (null model) is the log
likelihood without explanatory variables in the model and L
(fitted model) is the log likelihood from the final iteration with all
the explanatory variables [11]. For a given number of variables
and the model’s corresponding degrees of freedom (d.f.), a
significant Chi-Square value (marked by asterisks) provides the
basis for rejecting the null hypothesis that all of the regression
coefficients in the model are equal to zero. This measure is used to
test both overall fit and respective fit of each of the nested
submodels.

The lower portion of each column in the tables that summarizes
the category submodels shows the regression coefficients and
associated standard errors (S.E.). Since these are estimated
multinomial logistic regression coefficients, they are relative to
the referent group. The standard interpretation of the multinomial
logit is that for a unit change in the explanatory variable, the logit
of outcome m relative to the referent group is expected to change
by its respective coefficient estimate (which is in log-odds units)
assuming that the other variables in the model are held constant
[11]. For significant coefficients (marked with asterisks), we reject
the null hypothesis that a particular explanatory variable’s
regression coefficient is zero given that the rest of the predictors
are in the submodel.

2.3. Explanatory variables

Descriptive analysis of the CBECS datasets [12] makes it clear
that new technologies are displacing old ones, and that their levels
and rates of penetration vary substantially. This begs the following
question: What are the factors associated with the adoption of
specific technologies?

The location of a building dictates the price it pays for energy,
the climatic conditions it endures, and its regulatory and cultural
context. The CBECS dataset indicates in which of nine U.S. Census
Divisions a building is located, which roughly discriminates on
energy prices and climate, but not on regulatory context. CBECS
also directly reports on energy consumption and expenditures,
from which we derive average prices. Additionally, CBECS directly
reports the number of heating and cooling degree days in the local
climate. In the regression analyses that follow, we use energy
prices, heating degree days, and cooling degree days as proxies for
location. Each of these variables supports a finding of systematic
differences among Census Divisions at the p < 0.001 level of
significance in one-way analysis-of-variance tests, not shown. A
multinomial logistic regression analysis (not shown) predicting
Census Division using these three variables confirms their
explanatory power at the p < 0.001 level of significance for the
overall model and individual parameter estimates. Thus, rather
than make subsequent analyses unwieldy by having too many
variables, we rely solely on the variables of energy price, heating
degree days, and cooling degree days to operationalize the concept
of location.

The activities expected to take place within a building should
strongly influence its design and associated technology choices.
The CBECS dataset assigns buildings to one of 18 principal activity
categories, such as ‘‘office’’ or ‘‘inpatient healthcare.’’ CBECS also
directly reports variables that function well as proxies for activity,
including building size (floor area), energy intensity (calculated by
dividing energy consumption by floor area), and owner–occupant
relationship (represented here by a binary variable that selects for



Table 1
Factors explaining fundamental energy technology choices in U.S. commercial buildings.

Multinomial logit model Space heatinga Space coolingb Windowsc Lightsd

Nagelkerke pseudo R2 0.47 0.44 0.25 0.14

Model fit Factor type Chi2 test of �2LL (d.f.) Chi2 test of �2LL (d.f.) Chi2 test of �2LL (d.f.) Chi2 test of �2LL (d.f.)

Overall model 2085 (54)*** 1630 (27)*** 933 (18)*** 387 (18)***

Explanatory factors:

Constant 168 (6)*** 94 (3)*** 446 (2)*** 14 (2)***

Energy price Location 130 (6)*** 36 (3)*** 30 (2)*** 5 (2)

Heating degree days Location 44 (6)*** 74 (3)*** 139 (2)*** 1 (2)

Cooling degree days Location 53 (6)*** 30 (3)*** 1 (2) 2 (2)

Floor area Activity 337 (6)*** 682 (3)*** 17 (2)*** 1 (2)

Energy intensity Activity 304 (6)*** 240 (3)*** 15 (2)*** 3 (2)

Rental Activity 180 (6)*** 72 (3)*** 11 (2)** <1 (2)

Year built Building 174 (6)*** 81 (3)*** 424 (2)*** 4 (2)

Percent glass Building 91 (6)*** 24 (3)*** 6 (2) 1 (2)

Installed cost Technology 3 (6) <1 (3) <1 (2) 374 (2)***

Category submodels Factor type Coefficient (S.E.) Coefficient (S.E.) Coefficient (S.E.) Coefficient (S.E.)

Reference category Packaged unit (reference

category, n = 737)

Packaged unit (reference

category, n = 1280)

Single-layer glass

(n = 1450)

Fluorescent lamps

(n = 3130)

Category 1 Furnace (n = 1001) Residential or Individual

unit (n = 843)

Multi-layer glass

(n = 1639)

Incandescent lamps

(n = 338)

Constant 26.951 (4.540)*** 28.996 (3.538)*** �65.150 (3.581)*** 1.899 (4.456)

Energy price Location �0.010 (0.002)*** 0.149 (0.147) �0.006 (0.002)*** 0.330 (0.180)

Heating degree days Location 0.279 (0.073)*** 0.293 (0.063)*** 0.637 (0.057)*** 0.080 (0.079

Cooling degree days Location �0.573 (0.161)*** 0.498 (0.135)*** 0.128 (0.112) 0.200 (0.169)

Floor area Activity �0.051 (0.008)*** �0.328 (0.035)*** 0.007 (0.002)** 0.003 (0.003)

Energy intensity Activity �0.340 (0.062)*** �0.384 (0.054)*** 0.158 (0.045)*** 0.001 (0.061)

Rental Activity �0.092 (0.107) 0.015 (0.098) �0.130 (0.085) 0.001 (0.131)

Year built Building �12.190 (2.298)*** �12.984 (1.790)*** 31.971 (1.807)*** �0.347 (2.258)

Percent glass Building �0.126 (0.058)* 0.163 (0.052)** 0.079 (0.042) �0.059 (0.065)

Installed cost Technology �0.106 (0.097) 0.003 (0.072) 0.007 (0.044) �1.367 (0.144)***

Category 2 Boiler (n = 860) Central chiller or district

ch. water (n = 580)

Combination of both

(n = 722)

Advanced lamps

(n = 338)

Constant 46.351 (4.779)*** 0.179 (5.311) �12.859 (3.199)*** �16.012 (4.557)***

Energy price Location �0.030 (0.003)*** �0.836 (0.199)*** �0.010 (0.002)*** 0.207 (0.173)

Heating degree days Location 0.000 (0.084) �0.392 (0.090)*** 0.508 (0.070)*** �0.001 (0.076)

Cooling degree days Location �1.093 (0.198)*** 0.152 (0.182) 0.090 (0.149) �0.084 (0.175)

Floor area Activity 0.039 (0.005)*** 0.891 (0.052)*** 0.010 (0.003)*** 0.000 (0.003)

Energy intensity Activity 0.219 (0.075)** 1.001 (0.094)*** 0.148 (0.056)** 0.097 (0.060)

Rental Activity �0.949 (0.131)*** �1.241 (0.158)*** �0.355 (0.109)*** �0.037 (0.128)

Year built Building �23.190 (2.431)*** �8.805 (2.698)*** 5.304 (1.626)*** 4.530 (2.306)*

Percent glass Building 0.374 (0.059)*** 0.260 (0.061)*** 0.109 (0.050)* �0.040 (0.063)

Installed cost Technology 0.020 (0.108) 0.075 (0.099) 0.031 (0.053) 1.890 (0.138)***

Category 3 Other (n = 849) Other (n = 398)

Constant 22.946 (6.310)*** �9.631 (5.473)

Energy price Location �0.005 (0.003) �0.717 (0.185)***

Heating degree days Location 0.232 (0.105)* �0.304 (0.079)***

Cooling degree days Location 0.047 (0.209) �0.435 (0.164)**

Floor area Activity �0.017 (0.011) �0.173 (0.043)***

Energy intensity Activity �0.634 (0.087)*** �0.306 (0.067)***

Rental Activity 0.448 (0.154)** �0.162 (0.124)

Year built Building �10.640 (3.193)*** 5.505 (2.772)*

Percent glass Building 0.056 (0.084) 0.144 (0.062)*

Installed cost Technology �0.089 (0.143) �0.037 (0.090)

Multinomial logistic regression analysis. Predicts choice among categories based on explanatory factors. In the analyses, floor area, energy price, and energy intensity are

subjected to a log transformation to improve normality. In the analyses, heating degree days, cooling degree days, and year constructed are divided by 1000 to reduce the

number of decimal places in the regression coefficients.
a Energy price and energy intensity refer to multi-fuel energy (electricity, natural gas, fuel oil, other). Other category includes individual space heaters, heat pumps, district

heat, and other heating equipment.
b Energy price and energy intensity refer to electricity only, because most cooling technologies do not use anything else. Other category includes heat pumps, evaporative

coolers, and other cooling equipment.
c Energy price and energy intensity refer to multi-fuel energy (electricity, natural gas, fuel oil, other).
d Energy price and energy intensity refer to electricity only, because most lighting technologies do not use anything else. Cases are placed into categories based on the

predominant lighting technology used, by percent of floor area. Advanced lamps include compact fluorescents, high-intensity discharge, halogen, and other technologies.
* Significant at 0.05 level.
** Significant at 0.01 level.
*** Significant at 0.001 level.
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Table 2
Factors explaining energy-efficiency choices in U.S. commercial buildings.

Multinomial logit model HVACa Controlsb Windowsc Lightsd

Nagelkerke pseudo R2 0.20 0.33 0.15 0.21

Model fit Factor type Chi2 test of �2LL (d.f.) Chi2 test of �2LL (d.f.) Chi2 test of �2LL (d.f.) Chi2 test of �2LL (d.f.)

Overall model 774 (27)*** 608 (18)*** 542 (27)*** 621 (27)***

Explanatory factors:

Constant 111 (3)*** 56 (2)*** 135 (3)*** 42 (3)***

Energy price Location 6 (3) 41 (2)*** 6 (3) 32 (3)***

Heating degree days Location 7 (3) 4 (2) 22 (3)*** 3 (3)

Cooling degree days Location 2 (3) 11 (2)** 4 (3) 15 (3)**

Floor area Activity 256 (3)*** 187 (2)*** 144 (3)*** 155 (3)***

Energy intensity Activity 65 (3)*** 55 (2)*** 24 (3)*** 38 (3)***

Rental Activity 55 (3)*** 34 (2)*** 4 (3) 78 (3)***

Year built Building 92 (3)*** 50 (2)*** 125 (3)*** 26 (3)***

Percent glass Building 61 (3)*** 28 (2)*** 45 (3)*** 48 (3)***

Installed cost Technology 5 (3) 1 (2) 2 (3) 3 (3)

Category submodels Factor type Coefficient (S.E.) Coefficient (S.E.) Coefficient (S.E.) Coefficient (S.E.)

Reference category None adopted

(n = 1708)

Manual thermostat

(n = 763)

None adopted

(n = 1201)

None adopted

(n = 2955)

Category 1 One technology

adopted (n = 826)

Time-clock

thermostat (n = 470)

One treatment

adopted (n = 1477)

One technology

adopted (n = 224)

Constant �8.543 (3.063)** �28.198 (4.912)*** �18.0391 (2.851)*** �8.472 (5.496)

Energy price Location �0.153 (0.125) �1.066 (1.786) �0.056 (0.116) �0.847 (0.210)***

Heating degree days Location �0.107 (0.058) �0.074 (0.080) �0.250 (0.055)*** �0.105 (0.100)

Cooling degree days Location 0.152 (0.120) �0.614 (0.186)*** �0.215 (0.116) 0.193 (0.201)

Floor area Activity �0.051 (0.007)*** 0.014 (0.009) 0.025 (0.004)*** 0.017 (0.003)***

Energy intensity Activity 0.025 (0.046) 0.213 (0.069)** 0.068 (0.044) 0.306 (0.085)***

Rental Activity �0.172 (0.092) �0.095 (0.129) 0.159 (0.087) �1.216 (0.200)***

Year built Building 4.230 (1.556)** 13.506 (2.439)*** 9.557 (1.452)*** 0.749 (2.798)

Percent glass Building 0.165 (0.048)*** 0.197 (0.065)** 0.159 (0.045)*** 0.248 (0.069)***

Installed cost Technology 0.076 (0.037)* 0.037 (0.071) �0.022 (0.035) �0.031 (0.079)

Category 2 Two technologies

adopted (n = 443)

Energy mgmt control

system (n = 528)

Two treatments

adopted (n = 685)

Two technologies

adopted (n = 308)

Constant �21.329 (4.356)*** �33.322 (5.625)*** �30.217 (3.950)*** �18.307 (5.229)***

Energy price Location 0.136 (0.159) �14.271 (2.419)*** �0.067 (0.147) �0.823 (0.187)***

Heating degree days Location �0.172 (0.073)* �0.193 (0.095)* �0.174 (0.068)** �0.050 (0.087)

Cooling degree days Location 0.082 (0.147) �0.294 (0.199) �0.195 (0.144) 0.069 (0.185)

Floor area Activity �0.003 (0.005) 0.075 (0.008)*** 0.034 (0.004)*** 0.023 (0.003)***

Energy intensity Activity 0.273 (0.062)*** 0.586 (0.082)*** 0.222 (0.058)*** 0.355 (0.075)***

Rental Activity �0.282 (0.117)* �0.856 (0.155)*** 0.052 (0.109) �0.942 (0.162)***

Year built Building 9.178 (2.211)*** 15.217 (2.794)*** 14.427 (2.012)*** 5.622 (2.657)*

Percent glass Building 0.234 (0.056)*** 0.354 (0.069)*** 0.316 (0.052)*** 0.327 (0.059)***

Installed cost Technology �0.006 (0.046) �0.041 (0.080) 0.022 (0.044) �0.101 (0.070)

Category 3 Three or more

adopted (n = 736)

Three or more

adopted (n = 296)

Three or more

adopted (n = 160)

Constant �39.407 (4.227)*** �59.330 (6.851)*** �43.680 (8.582)***

Energy price Location �0.244 (0.143) �0.496 (0.208)* �0.448 (0.259)

Heating degree days Location �0.073 (0.066) �0.232 (0.095)* �0.166 (0.109)

Cooling degree days Location �0.043 (0.142) �0.145 (0.195) �0.989 (0.291)***

Floor area Activity 0.024 (0.003)*** 0.043 (0.005)*** 0.033 (0.003)***

Energy intensity Activity 0.420 (0.059)*** 0.325 (0.084)*** 0.311 (0.103)**

Rental Activity �0.813 (0.113)*** �0.012 (0.153) �0.433 (0.201)*

Year built Building 18.591 (2.150)*** 29.237 (3.480)*** 19.094 (4.342)***

Percent glass Building 0.360 (0.048)*** 0.333 (0.068)*** 0.353 (0.079)***

Installed cost Technology 0.009 (0.042) 0.059 (0.061) �0.121 (0.097)

Multinomial logistic regression analysis. Predicts choice among categories based on explanatory factors. In the analyses, floor area, energy price, and energy intensity are

subjected to a log transformation to improve normality. In the analyses, heating degree days, cooling degree days, and year constructed are divided by 1000 to reduce the

number of decimal places in the regression coefficients.
a Energy price and energy intensity refer to multi-fuel energy (electricity, natural gas, fuel oil, other). HVAC efficiency technologies include variable-air-volume systems,

economizer cycles, preventative maintenance, and energy management and controls systems.
b Energy price and energy intensity refer to electricity only, because most HVAC technologies controlled by these systems do not use anything else.
c Energy price and energy intensity refer to multi-fuel energy (electricity, natural gas, fuel oil, other). Window treatments include tinted glass, reflective glass, awnings or

louvers, and skylights or atriums.
d Energy price and energy intensity refer to electricity only, because most lighting technologies do not use anything else. Lighting efficiency technologies include specular

reflectors, electronic ballasts, auto sensors, and energy management and controls systems for lighting.
* Significant at 0.05 level.
** Significant at 0.01 level.
*** Significant at 0.001 level.
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the problematic yet ubiquitous privately-owned rental building
that suffers from the split incentive of having different parties own
the building and pay the utility bills). These proxies relate
intuitively to activity categories. Illustratively, educational activ-
ities require a significant amount of floor area, are not very energy-
intensive, and are almost never in rented buildings. By contrast,
food service requires only a small footprint, is very energy
intensive, and often occupies rented space. Each of these variables
supports a finding of systematic differences among principal
activities at the p < 0.001 level of significance in one-way analysis-
of-variance tests, not shown. A multinomial logistic regression
analysis (not shown) predicting principal activity using these three
variables confirms their explanatory power at the p < 0.001 level
of significance for the overall model and individual parameter
estimates. Again, rather than make subsequent analyses unwieldy,
we rely solely on the variables of floor area, energy intensity, and
private rental to operationalize the concept of principal activity.

Characteristics of the building itself should also strongly
influence technology adoption. Most obviously, the year of
construction affects the architectural style, relative factor prices
(costs of labor, materials, and energy), and universe of available
technologies. Also important for influencing energy use is the
amount of glazing in the building envelope (measured as percent
that is glass). Glazing also correlates with a Modernist architectural
style and its associated construction techniques. These two
variables serve to operationalize the concept of building-specific
characteristics.

Finally, characteristics of the technology to be adopted should
be influential. We focus here on its installed cost, measured as an
ordinal variable with low, medium, and high values.

3. Results

The multinomial logistic regression models shown in Tables 1
and 2 predict the adoption of fundamental energy technologies
and energy efficiency improvements, respectively, within U.S.
commercial buildings. A common set of explanatory variables is
used in all of the models to facilitate comparisons across
technologies of the factors driving technology adoption. The
following discussion highlights only the key empirical findings
and is not exhaustive.

3.1. Adoption of fundamental building technologies

Table 1 summarizes models of technology choice for space
heating, space cooling, windows, and lights. As mentioned in
Section 2, each column in the table is a discrete choice (multi-
nomial logit regression) model for a different group of technol-
ogies. The top part of each column summarizes the performance of
the overall model, and the bottom part of each column provides
details on the associated submodels. The submodels show how
important the explanatory variables are in predicting the adoption
of specific technologies. An overall model that performs well will
have a high Nagelkerke pseudo R2 and strongly significant
Likelihood Ratio Chi-Square tests. Explanatory variables that do
not have strongly significant Likelihood Ratio Chi-Square tests do
not contribute to the overall model’s predictive power. Within the
category submodels, regression coefficients with significant
explanatory power are marked with asterisks. Coefficients are
measured relative to the reference category.

The model of space heating technology choice shown in column
3 of Table 1 asks: What factors explain whether space heating is
accomplished with packaged units, furnaces, boilers, or other
technology? Based on the pseudo R2 and Likelihood Ratio Chi-
Square tests, the model performs well enough to reject the null
hypothesis overall and for each explanatory factor except the
installation cost of the technology. Recall that the null hypothesis
is that there is no systematic relationship between the explanatory
and dependent variables. Based on the signs of the significant
regression coefficients in the lower part of column 3, packaged
heating units, the reference category, are found nationwide,
especially in newer buildings in warmer climates. Relative to
packaged units, furnaces are more prevalent in locations with
lower energy prices and colder climates, with principal activities
that require a smaller floor area and lower energy intensity, in
buildings that are older. Boilers are also more common in locations
with lower energy prices and colder climates, but with principal
activities requiring more floor area, not rented for profit, in
buildings that are older but with more glass. Other space heating
technologies include individual space heaters, heat pumps, district
heat, and other heating equipment. In additional analyses not
shown, individual space heaters appear more often in older, less
energy-intensive, rental buildings. Heat pumps, a relatively recent
innovation, are found nationwide where principal activities
require less floor area and energy intensity, are not rented, and
are in newer buildings with more glass. District steam and hot
water systems are used in locations with lower energy prices,
where principal activities demand a larger floor area, greater
energy intensity, and owner-occupancy, in buildings that are older
but with much glass.

Column 4 of Table 1 shows a robust model of space cooling
technology choice. It asks: What factors explain whether space
cooling is accomplished with packaged units, residential-type
central air-conditioning systems or room air conditioners, central
chillers or district chilled water systems, or other technology such
as heat pumps or swamp coolers? The overall model has a
relatively high pseudo R2 and passes the Chi-Square significance
test except for the installed cost variable. Based on the signs of the
significant coefficients in the bottom part of column 4, packaged
air-conditioning units, the reference category, are most common in
mid-sized, rented buildings. Residential-type central air-condi-
tioning systems and individual room air conditioners are more
prevalent in locations with more extreme, inland climates, with
principal activities requiring a smaller floor area and lower
electricity intensity, in older buildings with a substantial amount
of glass. Central chillers and district chilled water systems appear
in locations with lower electricity prices and heating loads, with
non-rental uses that require more floor space and higher electricity
intensity, in buildings that are older and have much glass. Heat
pumps and other space cooling technologies appear in locations
with lower electricity prices and less extreme climates, with
principal activities that require less floor area are less electricity
intensive.

Column 5 of Table 1 shows a model that answers this question:
What factors explain the choice between single-layer, multi-layer,
or a combination of single- and multi-layer windows? Based on a
modest pseudo R2 value and Chi-Square tests, the model predicts
the adoption of window types performs well enough to reject the
null hypothesis overall and for most of the explanatory factors
except cooling degree days, percent glass, and installation cost.
Based on the signs of the significant regression coefficients in the
lower part of column 5, the model indicates that single-layer glass,
the reference category, is more common in older, smaller, rental
buildings in warmer climates. Multi-layer glass, or a combination
of both single- and multi-layer glass, is an innovation that has been
adopted especially in locations with lower energy prices and colder
winters, with uses requiring more floor area and higher energy
intensities, not rented, in newer buildings. The only part of this
pattern that does not make economic sense, and agree with a
theory of adoption as being driven by relative advantage, is the
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correlation with lower energy prices, a result most likely due to
unobserved regional factors such as local building codes.

Column 6 of Table 1 shows a model of lighting technology
adoption that asks: What factors explain whether incandescent,
fluorescent or more advanced types of lights are chosen? Based on
the pseudo R2 and Chi-Square statistics, this model has very little
explanatory power. This is due to the preeminence of fluorescent
lighting in commercial buildings. Alternatives, such as old-
fashioned incandescent bulbs, or new, advanced halogen and
high-intensity discharge bulbs are still relatively rare. Based on the
signs of the significant regression coefficients in the bottom part of
column 6, some first-cost-conscious users choose incandescents,
whereas some of those with larger capital budgets may choose
more advanced technologies. Lighting technology is easy to retrofit
into existing buildings, hence it does not closely track location-,
use-, or building-specific variables.

3.2. Adoption of energy-efficiency technologies

Table 2 summarizes models explaining adoption of energy-
efficiency technologies including HVAC features, control system
types, window treatments, and lighting technologies. As in Table 1,
each column in the table is a discrete choice model for a different
group of technologies. The top part of each column summarizes the
performance of the overall model, and the bottom part of each
column provides details on the associated submodels.

Column 3 of Table 2 shows a model that asks: What factors
explain whether buildings contain none, one, two, or three or more
HVAC efficiency technologies? Specifically, it shows results for a
suite of HVAC efficiency technologies including variable-air-
volume systems, economizer cycles, preventative maintenance,
and energy management and control systems, represented as a
categorical index of none, one, two, or three or more of these
technologies adopted. Based on a modest pseudo R2 and significant
Chi-Square tests, the overall model is robust enough to generate
insights. Both the Chi-Square tests and the submodels’ regression
coefficients show that locational factors (energy price, heating and
cooling degree days) lack explanatory power in this model. The
significant regression coefficients in the bottom part of column 3
show that greater adoption of these technologies is associated with
activities requiring a larger floor area and higher energy intensity,
in newer buildings that have much glass and are not rented. Recall
that percent glass is important partly as an indicator of
architectural style.

Column 4 of Table 2 shows a model of HVAC control system
choices, asking: What factors explain whether manual thermo-
stats, time-clock thermostats, or advanced energy management
and control systems are adopted in buildings? The overall model is
robust, with a respectable pseudo R2 and significant Chi-Square
tests. The signs and significance of the regression coefficients in the
lower part of column 4 demonstrate that locational factors again
have a relatively weak influence. Relative to manual thermostatic
control, more advanced time-clock thermostats appear more often
with principal activities that are more electricity intensive, in
buildings that are newer and have more glass. Highly-advanced
energy management and control systems appear in larger, more
electricity-intensive, owner-occupied buildings that are newer and
have more glass.

Column 5 of Table 2 shows a model that asks: What factors
explain buildings use none, one, two, or three or more energy-
efficient window treatments? With a low pseudo R2 and several
explanatory variables not passing the Chi-Square significance test,
this is a relatively weak model that attempts to explain the choice
of energy-efficient window treatments including tinted glass,
reflective glass, awnings or louvers, and skylights or atriums. These
items are represented as a categorical index of none, one, two, or
three or more of these treatments adopted. Again, locational
factors do not play much of a role, with only heating degree days
showing significance. Based on the signs of the significant
regression coefficients in the lower part of column 5, a greater
number of window treatments appear in larger, newer, more
energy-intensive buildings with much glass.

Lighting efficiency choices are the subject of a final model,
shown in column 6 of Table 2. It asks: What factors explain
whether buildings use none, one, two, or three or more lighting
efficiency technologies? These include specular reflectors, electro-
nic ballasts, auto sensors, and energy management and control
systems for lighting, represented as a categorical index of none,
one, two, or three or more of these technologies adopted. Based on
a modest pseudo R2 and mostly significant Chi-Square tests, the
overall model performs well enough to provide insights. Again,
based on the signs and significance of the regression coefficients in
the lower part of column 6, locational factors do not play a strong
role. Principal building activity has more explanatory power, with
greater floor area, higher energy intensity, and owner-occupancy
correlating with more lighting efficiency technologies adopted.
Newer buildings with more glass are also more likely to adopt
these technologies. Daylighting, or reliance on natural light, is an
alternative lighting efficiency strategy not included above because
it has such different correlates, and it is more often found in older,
smaller, less electricity-intensive buildings with large amounts of
glass.

3.3. Comparing fundamental components and energy-efficiency

Choices

In summary, the adoption of fundamental heating, cooling, and
window technologies in U.S. commercial buildings is very much a
function of locational factors, principal building activity, and
building-specific characteristics. Different technologies have
acquired specific niches, and no technology dominates across
locations and uses. There are a few pronounced regional
differences identified by the authors’ inspection of the data behind
the models summarized here; for example, energy management
and control systems are especially common in the Pacific region,
and economizer cycles are more prevalent in the New England and
Pacific areas. Regular HVAC maintenance is now a ubiquitous
practice.

Lighting technologies are different story. Fluorescent bulbs
have captured most of the U.S. commercial building market and
have dominated that market for decades. New technologies are
penetrating that market only at the margins, mostly in newer,
higher-end buildings.

Energy-efficiency technologies for heating, cooling, windows,
lighting, and controls are entering widespread use, but their
adoption patterns differ from the fundamental building compo-
nents discussed above. Locational factors typically play a smaller
role. Principal building activity and building characteristics retain
explanatory power. More of these technologies are present in
buildings that are newer, larger, more energy-intensive, have more
glass on the exterior, and are owner-occupied. By contrast, these
innovations are less likely to be present in smaller, older, ordinary,
rented commercial buildings.

4. Conclusions

This research has shown that numerous technologies have
penetrated the U.S. commercial building sector; but only a few,
such as fluorescent light bulbs, have become dominant (see also
[12]).
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What are the factors associated with the adoption of specific
basic building technologies? Analysis of this question supports the
compatibility tenet of diffusion theory. This research confirms that
submarkets are defined by locational factors (energy prices,
climatic conditions), principal activity (floor area, energy intensity
of use, occupant status), and building factors (vintage, envelope
design). Rational attention to technologies that bestow a relative
advantage on the owner is also evident, but this does not always
lead to outcomes that reduce life-cycle costs, especially when the
occupants rent the building.

By contrast, energy-efficient adaptations most often appear in
newer, larger, more energy-intensive, owner-occupied buildings.
These are the buildings that can best afford the up-front costs of
innovation, which is often a design-intensive process. This
finding matches a discrete-choice model of innovation diffusion
driven by the users’ wealth, expectations, ability to absorb search
and learning costs, and a situation with low switching and
opportunity costs. These energy-efficient technologies therefore
are unlikely to diffuse very rapidly beyond the current group of
adopters.

There are several implications of this research for building
practice and public policy, as follows:
� M
uch so-called energy-efficiency investment is taking place in
higher-end buildings, and only partly compensating for these
buildings’ overall higher energy intensities. If energy efficiency is
an important public objective, then the minimum threshold for
acceptable efficient performance has to be raised substantially
by regulation or other means to ensure that most commercial
buildings become adopters of these technologies.

� T
he renter’s split-incentive dilemma is real, because rental

buildings are indeed less likely to adopt energy-efficient features
in comparison to owner-occupied buildings.

� T
he design of fundamental building components is appropriately

place- and use-specific. Building performance rating systems,
such as the U.S. Green Building Council’s Leadership in Energy
and Environmental Design (LEED), should rely on performance
measures rather than technology specifications in recognition of
the desirability of tailoring designs to specific contexts.
� T
he large stock of existing buildings is both a persistent problem
and an opportunity. To date, they contain few innovations, yet
they represent an unexploited opportunity to achieve better
performance in the nation’s commercial building inventory if
energy-efficient adaptations such as those discussed here
become mandatory, or more cost-effective.

Future research should investigate how the adoption of
individual innovative technologies relates to the construction of
innovative, high-performance buildings. Further examination of
the energy efficiency – energy intensity link is also needed.
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