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Designing Buildings for Real Occupants:
An Agent-Based Approach
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Abstract—Building information modeling is only beginning to
incorporate human factors, although buildings are sites where
humans and technologies interact with globally significant con-
sequences. Some buildings fail to perform as their designers in-
tended, in part because users do not or cannot properly operate the
building, and some occupants behave differently than designers
expect. Innovative buildings, e.g., green buildings, are particularly
susceptible to usability problems. This paper presents a frame-
work for prospectively measuring the usability of designs before
buildings are constructed, while there is still time to improve the
design. The framework, which was implemented as an agent-based
computer simulation model, tests how well buildings are likely
to perform, given realistic occupants. An illustrative model for
lighting design shows that this modeling approach has practical
efficacy, demonstrating that, to the extent that users exhibit het-
erogeneous behaviors and preferences, designs that allow greater
local control and ease of operation perform better.

Index Terms—Buildings, design automation, human factors,
simulation, usability.

As Norman shared in The Design of Everyday Things,
“technology changes rapidly, people change slowly.”[1]

I. INTRODUCTION

S EVERAL factors push the construction industry to be-
come more innovative. Occupants demand distinctive

high-quality spaces in which to live and work, economic glob-
alization forces companies to cut operating costs to remain
competitive, the green building movement seeks to reduce
environmental impacts and improve occupant health, threats to
energy affordability and security make national governments
demand greater energy efficiency, and droughts and loss of
snowpack do the same for water efficiency.
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This conservative industry has begun a cycle of innovation
that will dramatically change the performance, look, and feel
of buildings. However, change is not an easy process, and it
is difficult to use some of the innovations in practice. Not all
innovations will widely diffuse, and not all of them deserve to
do so.

Characteristics of innovations that encourage their rapid dif-
fusion include relative advantage (whether they are cheaper or
better), compatibility (whether they fit well with the current
system), complexity (whether they are easy to figure out),
observability (whether they can be seen working somewhere
nearby), and trialability (whether they can first be tested)
[2]. For example, solar photovoltaics slowly diffuse, because
they cost more than buying energy from the utility, and they
sometimes seem complicated. Insulation, by contrast, rapidly
diffuses, because it quickly pays back its installation cost in the
form of reduced energy bills while also making the building
thermally and acoustically more comfortable.

Standard design practices focus on the relative advantage and
compatibility characteristics of candidate innovations. Thus,
architects and engineers look for the most cost-effective so-
lution that meets the client’s performance targets and their
own customary system designs. Although designers and their
clients agree on these basic practices, they may still argue about
whether “cost effective” should be defined on a first-cost or life-
cycle-cost basis and whether the appropriate target should be a
building that meets or exceeds code.

Buildings, particularly innovative ones, do not always sat-
isfy their occupants or perform as expected. Sometimes, these
problems may be identified as straightforward design errors.
For example, windows may directly be exposed to the late
afternoon sun, or the energy management and control system
may be misprogrammed. However, oftentimes, the problem lies
in the way the building is used by occupants or operated by
facilities staff. For example, a maintenance crew may force the
economizer cycle on the heating–ventilating–air conditioning
(HVAC) system into the “open” position but then forget to reset
it so that it stays open all year long, or occupants may leave
their window blinds closed all day rather than adjusting them
according to the available daylight. In these cases, the users of
the building behave in ways that the designer did not intend
and that might be inconsistent with building performance goals.
In such cases, the human presence may become a barrier to
improved building performance.

Designers often wish for smarter, more orderly, and better
behaved users, but real buildings need to accommodate real
user behaviors. Indeed, among the lessons learned from earlier
generations of energy-efficient passive solar buildings is that
usability determines success, and the lack of usability hinders
the diffusion of innovations [3]. This paper brings usability
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analysis to computer-based building information modeling and
design.

II. BACKGROUND

A. Usability

The premise of this paper is that, because the construction
industry innovates, designers need to more systematically as-
sess the usability of potential innovations. Usability is defined
as the “. . .effectiveness, efficiency, and satisfaction with which
a specified set of users can achieve a specified set of tasks in a
particular environment” [4]. It is the ease with which humans,
behaving normally, can operate a technology for its intended
use.

Usability is associated with concepts such as functionality,
comprehensibility, and convenience. It focuses on the character-
istics of innovations, including complexity, observability, and
trialability, which have more to do with human nature than with
technological performance.

Usability is an attribute that people usually experientially
assess. For example, we typically need to operate a building
to determine whether keeping it comfortable is easy. We must
usually occupy a space to understand how much effort goes
into managing daylight to meet lighting needs or how com-
prehensible the interface on a thermostat is. Usability affects
occupant satisfaction and productivity, as well as the building’s
performance.

A focus on usability is not new, of course, as architects
from Vitruvius forward remind us. Norman [1] has addressed
this issue for consumer products, [5] has become a bible to a
generation of webpage designers, and [6] has done a similar
job for large-scale systems. It is harder to find similar classics
in the building industry, with [7] and [8], perhaps, coming the
closest, but industry actors are interested (see, e.g., [9], [10]).
Standard prescriptions for improving usability include the use
of affordances (design an item so that it offers strong clues
that it “is for” a specific purpose, no instructions required),
clear conceptual models (ensure that visible evidence guides
user to the correct mental model of how the item functions),
visibility (do not have more functions than controls), mapping
(take advantage of intuitive physical analogies and cultural
understandings), feedback (send users immediate information
about the result of their actions), and constraints (limit choices
to reduce errors) [1].

Bevan and Macleod [11] identify the following three com-
plementary perspectives: 1) a technology-centered view that
usability is associated with a technology’s (or product’s) at-
tributes and influenced by guidelines and checklists; 2) a
context-centered view that places the characteristics of the
user, technology, task, and environment foremost; and 3) a
quality-of-use view that focuses on the interaction between
user and technology in a specific context. The technology-
and context-centered views identify necessary conditions, but
only the quality-of-use view captures the sufficient conditions
for measuring usability. The usable buildings literature echoes
these distinctions in working toward designs that meet func-
tional requirements, are serviceable in the context of actual use,
and deliver a satisfactory user experience [9].

Postoccupancy evaluations (POEs) of buildings that measure
operators’ and occupants’ perceptions of building performance

and usability are becoming more common. Along with the
commissioning of building systems, POEs help owners improve
building performance and increase tenant satisfaction. Both
POE and commissioning are currently required to earn certain
green building certifications, for example.

The problem with waiting to assess usability until after the
structure is built and occupied is, that, by then, fixing a usability
flaw is much harder. What is needed is a way to do prospective
usability evaluation. Computer simulation modeling offers this
possibility.

B. Building Information Modeling

According to [12], “a building information model (BIM)
is a digital representation of physical and functional charac-
teristics of a facility.” BIM 1.0 focuses on visualization and
drawings, i.e., the stage that most architectural offices have
reached, whereas large firms and specialists have advanced
to BIM 2.0, which focuses on analysis, and they are investi-
gating BIM 3.0, which focuses on simulation [13]. This case
represents an exciting, if slowly advancing, shift in possi-
bilities from representation to interoperable data to virtual-
building sandbox [14]. BIM 4.0 for managing facilities seeks
to marry the BIM and building management system industries
[15], [16].

BIM tools currently offer sophisticated views of key building
systems to aid the design process. Available products—some
stand alone, others integrated—analyze structural needs, wind
loading and microclimate impacts, massing, shading and shad-
ows, lighting needs, HVAC needs, energy use, acoustics, quan-
tity takeoffs, and costing, among others. Emerging tools can
simulate construction phasing, emergency evacuation, and a
few other dynamic phenomena. Missing from most models is
a meaningful representation of human agency. Instead, each
occupant is a passive object that, illustratively, adds 150 W/h
to the cooling load and accepts the system designer’s tar-
get levels of illumination, temperature, humidity, and out-
side air.

Richer representations of the human side of the
human–technology interactions in buildings are needed
for usability analysis. This paper introduces an agent-based
modeling approach that shows promise for integrating usability
analysis into standard BIM tools. It provides a straightforward
way of portraying realistic human behavior in buildings,
calibrating and validating this portrayal with POE survey data
when some are available, and testing the prospective usability
of alternative designs.

C. Usability Metrics

As the aforementioned definition implies, usability relates
to effectiveness, efficiency, and satisfaction. We define three
associated sets of usability metrics. There is strong support
from empirical studies in a variety of domains that that these
items measure a single underlying construct of usability [17].
Previous building researchers have measured effectiveness in
terms of whether users can achieve what they want to do
with the building, efficiency in terms of how long it takes
them to achieve it, and satisfaction in terms of their feelings
and attitude toward the building [18]. Our slightly different
operationalizations follow.
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Effectiveness measures the extent to which a person who
uses a technology can achieve a specified end-use performance
target, such as a lighting level of 300 lx on a desk in an office
building or an indoor air temperature of 20 ◦C in a home.
Software usability studies often subdivide effectiveness into an
error count and a task completion count [19], but for buildings,
a single success rate is more appropriate. Standard analysis
tools for the design of building systems, e.g., lighting and
HVAC, are well equipped to calculate in a deterministic manner
the outcomes that such technologies deliver, given specific
inputs. Those inputs will, however, be stochastic and take the
form of scenarios to be simulated, perhaps in a Monte Carlo
analysis. Hence, one measure of usability is the probability that
the technology effectively performs, given the distribution of
user behaviors.

Efficiency measures the ratio of the output of a system to its
input. It indicates whether a design wastes resources, including
the human resources of time, effort, and attention. Again,
several standard tools for designing building systems can help,
because they calculate efficiencies in the engineering sense, as
in energy efficiency and water-use efficiency. A usability anal-
ysis will need to augment these efficiency calculations with
measures of human resource use.

Satisfaction measures the utility that a user derives from a
system. It indicates the level of contentment or gratification
that a user feels when operating a system to fulfill a desire,
need, or expectation. Standard design tools are of little direct
use here, because the calculation of satisfaction depends on
understanding the user’s preferences and perceptions. A typical
utility function would incorporate effectiveness and efficiency
alongside other factors that give satisfaction to a user. Building
owners, operators, and occupants typically have very different
interests and concerns and, therefore, will have different utility
functions.

D. Occupant Behavior

Different disciplines emphasize different aspects of human
decision making. Economics emphasizes external factors, such
as prices, that drive specific decision outcomes. Psychology,
instead, more often emphasizes internal factors, such as values
and beliefs. Computer science emphasizes procedural steps in
the decision-making process. Here, we synthesize the theory to
guide a data collection and modeling effort based on the three
disciplinary traditions.

Economic Models: Neoclassical economics employs an ex-
tremely simple model of human agency, i.e., the self-interested
rational maximizer. By assumption, a microeconomic agent has
full knowledge and perfect foresight, is asocial, and behaves
in a way that maximizes its own utility. Modern behavioral
economists accept this basic model but qualify it by identifying
cognitive and perceptual limits to rationality and the possibility
that satisfaction can derive from social and other considera-
tions. Economists are typically more interested in system-level
properties of the interactions of microeconomic agents than
they are in detailed explanations for particular agent behaviors.

Psychology Models: Psychologists are explicitly interested
in explaining agent behavior, and they pay relatively less atten-
tion to the resulting socioeconomic system dynamics. Psychol-
ogists do not have the luxury of programming human brains

to follow a specific decision-making framework. Instead, they
usually theorize about human cognition and behavior from
outside the black box and test those theories in a limited
fashion based on indirect evidence. There is less orthodoxy
in characterizing how human agents make decisions than in
economics and computer science. Most researchers develop and
test theories that focus on specific parts of the decision process.
In the environmental psychology literature, which focuses on
human–environment interactions, including nonselfish altruis-
tic behaviors, this topic is dominated by the following two
theories that share some elements: 1) the norm activation theory
[20] and 2) the theory of planned behavior (TPB) [21].

The norm activation theory posits that altruistic acts follow
from the development of personal norms to accept responsibil-
ity for acting altruistically, which are, in turn, due to developing
an awareness of a behavior’s consequences and holding beliefs
about personal responsibility [20], [22]. This line of theorizing
emphasizes the role of personal factors, and it links bedrock
values, beliefs about the necessity and efficacy of action, atti-
tudinal disposition, and the development of personal norms to
environmentally significant behavior.

Stern et al. [23] extend the values-focused thread by devel-
oping a value–belief–norm (VBN) theory of environmentalism.
Core values (which may be egoistic, altruistic, or biospheric)
influence beliefs (with regard to one’s ecological worldview,
awareness of adverse ecological consequences of human be-
havior, and perceived ability to reduce such threats), which,
in turn, help establish personal norms (with regard to a sense
of obligation to take proenvironmental actions), which finally
lead to specific behavioral outcomes. In his synthesis, Stern
[24] seeks to go beyond attitudinal factors to include contextual
forces (interpersonal influences, physical constraints, and legal
strictures) and personal capabilities (knowledge, skills, wealth,
time, and power) as key determinants of environmentally sig-
nificant behavior.

Social psychologists have long been concerned about the
weak empirical links between attitudes and behavior [25]. A
well-known attempt to improve the predictive power of atti-
tudes is TPB [26], which develops a model of behavior that
incorporates additional complementary factors such as social
norms and perceptions of control. TPB proposes a causal chain
that starts with beliefs about behaviors, norms, and personal
control of events, and these beliefs respectively influence atti-
tudes, subjective norms, and perceived control. These factors,
in turn, establish a person’s behavioral intentions, and the
intentions, interacting with perceived control, predict actual
behavior (see Fig. 1).

Formally, according to TPB [27], we have

B ∼ BI =w1 AB + w2 SN + w3 PBC (1)
AB =Σbiei (2)
SN =Σnimi (3)

PBC =Σcipi (4)

where
B behavior;
BI behavioral intention;
AB attitude toward the behavior;
SN subjective (social) norm with regard to the behavior;
PBC perceived behavioral control over behavior;
w1,2,3 weights applied to key factors AB, SN, and PBC;
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Fig. 1. TPB [27].

bi belief strength with regard to the outcome of perform-
ing behavior i;

ei evaluation of the desirability of the outcome of behav-
ior i;

ni strength of normative belief about the behavior (what
others think);

mi motivation that the individual has to comply with that
norm;

ci strength of control belief, which measures how much
control an individual expects to have over a factor that
governs the behavior;

pi power of a control belief, given the presence of a factor
that governs behavior (e.g., information, opportunities,
and barriers), which measures its power in determining
that the behavior will happen.

TPB is a robust formulation that has inspired a large literature
and a series of meta-analyses that provide broad-based empir-
ical support [21], [28]–[30]. However, TPB models typically
account for only about 1/3 of the variance in observed behav-
ior, suggesting that there is considerable room for improve-
ment [30].

TPB is closer to the traditional economic model of personal
utility maximization compared to Schwartz’s model of norm-
activated behavior, because it emphasizes personal utility (an
egoistic perspective) and not primarily altruistic values. TBP
also highlights perceived control over behavior, thereby rec-
ognizing the importance of external contextual factors such
as cost and availability. Several recent articles have grafted
elements of the norm-activated behavior and VBN models onto
TPB, creating new syntheses that address both internal and
external determinants of environmentally significant behavior
[22], [24], [31]–[33]. Of particular importance for this paper are
recent efforts to tie TPB to the belief–desire–intention (BDI)
framework in agent-based models (e.g., [34]), as discussed in
the following sections.

Computer Science Models: Artificial intelligence is a branch
of computer science that attempts to mimic or improve upon
human decision-making processes. One essential human char-
acteristic is agency, i.e., the ability to demonstrate autonomous
behavior [35]. Agent-based models specify how agents in-
teract with one another and with their environment, and the
specification includes the agent’s attributes, behavioral rules,
memory, resources, decision-making sophistication, and any
rules for modifying current behavioral rules [36]. A wide range
of human agent models are now available in the literature,

including zero-intelligence (nonadaptive) agents, agents subject
to reinforcement- or belief-based learning, and agents that can
evolve new behaviors and modes of learning and behavior [37].

To characterize the behaviors of building occupants, one
appropriate agent modeling framework is the BDI model as
inspired by [38] and formalized by [39]. BDI models seek to
mimic the practical reasoning processes by which humans make
“right” decisions, given the structure of their personal values
and society’s norms [34], [40], [41]. Agents in these models
are “rational and have certain mental attitudes of belief, de-
sire, and intention, representing, respectively, the informational,
motivational, and deliberative states of the agent” [39: 293].
We summarize the common elements of extant definitions as
follows [39], [42], [43].
Belief. This informative component provides the model with

information on the state of the external world, particularly
system-level information. Beliefs about the world may
differ from the actual state of the world due to incomplete
understanding or poor data. The belief processor in the
model converts a set of perceptions into a set of beliefs.
The belief processor answers the questions: “What do I
understand to be the state of affairs, and implicitly, what
are the possibilities?”

Desire. This motivational component provides the model with
information on the objectives to be accomplished and what
priorities or payoffs are associated with various current
objectives. Desires describe the state of affairs that the
agent wishes to bring about and its goals. The desire
processor in the model performs cognitive work by eval-
uating whether possible states of affairs are more or less
preferable, given current beliefs and preference structures.
The desire processor answers the questions: “What are my
preferences, and implicitly, which possibilities do I like
better?”

Intention. This deliberative component represents the currently
chosen courses of action, i.e., the plans that the agent
currently executes. Intentions are desires or objectives
that the agent has committed to achieve, whereas plans
are recipes or sequences of actions for achieving desired
outcomes. An agent forms an intention to satisfy a subset
of desires, creates some plans, and then selects a plan
to meet those specific goals. The deliberation processor
in the model filters the set of desires to select one in-
tention. A subsequent planning processor develops a li-
brary of plans that address current intentions. Finally, the



ANDREWS et al.: DESIGNING BUILDINGS FOR REAL OCCUPANTS: AGENT-BASED APPROACH 1081

Fig. 2. BDI model framework. Note that italicized items are processes and normally printed items are outputs [44].

decision-making processor selects a plan of action. The
deliberation, planning, and decision-making processors
(forming and carrying out intentions) answer the question:
“Toward which possibility am I working?”

Thus, the BDI framework includes a series of reasoning tasks
that grow and then prune a decision tree. Given data on the
external environment, the agent must establish its beliefs. Given
updated beliefs, it must establish the structure of its preferences.
Given updated beliefs and preferences, it must select the desire
that it intends to satisfy, the range of possible plans for doing so,
and the preferred plan of action. Then, the cycle repeats. Fig. 2
summarizes the model.

In the BDI framework, agents are not omniscient optimizers,
but rather, they are situated actors with bounded rationality,
multiple goals, and intentions that they sometimes do not fulfill.
BDI agents exhibit “goal-directed behavior, whereby an agent’s
actions are motivated by a hierarchy of goals rather than being
purely reactive . . . this model is based in folk psychology, i.e.,
the way that we think we think” [42: 2, 6].

Synthesis: The TPB and BDI frameworks are similar enough
in approach and scope such that we can reasonably combine
them. TPB provides a tested framework for questionnaire de-
sign and offers relatively detailed categories of beliefs. BDI
provides a tested framework for agent-based simulation mod-
eling and offers relatively detailed procedural steps that link
beliefs, intentions, and behaviors. Robbins and Wallace [34:
1576]argue that “a software implementation of the dynamic
BDI model can be used to simulate the process that is implicitly
suggested by the static TPB.” Fig. 3 shows the combined
BDI/TPB framework used in this paper.

Decision Making in the BDI Framework: Five processes
in the BDI framework contribute to decision making and
action. First, the perceptual processor translates information
from the environment into beliefs, and here, we assume that
the translation is perfect. (We could, instead, add noise to
the system by representing fixed environmental observations
as stochastic variables and taking random draws from the

distribution.) Second, the desire or cognitive processor trans-
lates a set of beliefs into a preference structure for measur-
ing the relative desirability of alternative outcomes. Third,
the deliberation processor selects a desired outcome or inten-
tion. Fourth, the planning processor generates several courses
of action or plans that could achieve the desired outcome.
Finally, the decision-making processor selects a plan and
executes it.

Each of these BDI processes depends on the building occu-
pant’s preferences, leading us to need an operational measure of
what makes the occupant happy. Relative satisfaction or happi-
ness is typically measured with a utility function that calculates
how many “utils” an occupant enjoys in a particular situation.

In the economics literature, human agents classically operate
as selfish atomistic optimizers with perfect foresight. More
recent theories have modified this caricature by acknowledg-
ing myopia, satisfying behavior, social embeddedness, and
bounded rationality [45]. Most economic decision-making
models exogenously specify their utility functions rather than
depending on an endogenous theory of preference formation.

Among the drivers of innovation mentioned at the begin-
ning of this paper, the green building movement exists, in
part, to overcome market failures that are not fully explained
by microeconomics—particularly with regard to the provision
of public goods. Rational-choice models (e.g., [46]) tend to
underestimate the actual level of private provision of public
goods [47]. Economic explanations of proenvironmental be-
haviors arguably need to account better for altruism and other
“psychological” motives not captured by a short-term selfish
conception of utility [48].

Economists have responded by hypothesizing a variety of
values that could be incorporated into utility functions, e.g.,
the “existence value” of knowing that Mount Everest is there
even if you never visit it or the “warm glow” value of having
reduced your carbon footprint [49]. Measuring these values is
a technical challenge that researchers approach by estimating
revealed preferences from actual behavior or by eliciting stated
preferences using questionnaires [50].
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Fig. 3. Combined BDI and TPB framework. Note that italicized items are processes and normally printed items are outputs.

Social psychologists have identified “universal” value sets
related to power, achievement, hedonism, stimulation, self di-
rection, universalism, benevolence, tradition, conformity, and
security [51]. Value conflicts can therefore arise within and
among individuals. To show that people, in fact, settle on differ-
ent predominant tradeoffs, Schwartz [51] clusters these values
along two dimensions. The first dimension extends from self
enhancement (SE) to self transcendence (ST), and the second
dimension extends from openness to change (O) to conserva-
tiveness (C) [52]. The following four types of environmentally
significant behavior may result [31]:

1) activism (ST, O);
2) good citizenship (ST, C);
3) healthy consumerism (SE, O);
4) conventional consumerism (SE, C).

Environmental psychologists find some empirical evidence
that there are distinct egoistic, altruistic, and biospheric value
orientations and that these values carry through to behavior

[53], [54], although the clearest case is for an egoistic (SE) ver-
sus broadly altruistic (ST) distinction [55]. Situational factors
may moderate (inhibit or facilitate) the effect of these personal
variables such that an attitudinal disposition toward a proenvi-
ronmental behavior is a good predictor of that behavior when
the situation encourages it but is a poor predictor otherwise
[31], [56].

III. METHODS AND DATA

This section introduces the modeling and data collection
activities performed for this paper. The scope of the modeling
activities is to represent the performance of building systems
accurately and in a way that highlights both the determining
role of occupant behavior and the links between building per-
formance and occupant satisfaction (see Fig. 4). The scope
of data collection includes the objective measures of building
performance, the objective measures of occupant behavior if
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Fig. 4. Modeling framework.

available, and the occupants’ subjective perceptions of their
experience in a case study building.

A. Simulation Modeling Framework

Computer simulation models that characterize complex sys-
tems to inform better decision making originated more than
30 years ago and are currently widely used in construction-
related fields [57]–[60]. Detailed engineering systems analysis
tools are widely used in HVAC, lighting, building orientation,
building envelope, and structural system design [61]–[66]. They
are used much less often for plumbing (water and wastewater),
with choices limited to public utility-scale tools for water and
wastewater [67], [68], and simple CAD-based estimating tools
[e.g., [69] and [70]]. Whole-building integrated design tools are
mostly confined to spreadsheet- or Matlab-based models that
were idiosyncratically developed by engineers for their own use
[e.g., [71] and [72]].

The most powerful of these tools provide extremely detailed
engineering estimates of system performance and equipment
needs, but they suffer from simplistic representations of occu-
pant behavior. For example, most models assume homogeneous
building occupants who like the same temperature set points,
lighting levels, and appliance loads, although survey data and
observations reveal great heterogeneity [73], [74].

Microsimulation models of commercial building energy de-
mand [75] and more recent agent-based models of various
human behaviors [76] have blazed pathways for improving
these representations of behavior, but they have just begun to
appear in building-level models. The most significant advances
have been in studies of emergency building evacuations, where
models currently have rich detail and usability [77]. By con-
trast, HVAC and lighting applications are limited to research-
level models of highly stylized one- to two-room buildings
[78], [79]. Part of our agenda is to advance this marriage of
engineering and behavioral analyses.

We have developed a research-level computer-based simula-
tion modeling framework that will ultimately support integrated
characterizations of lighting, water, wastewater, energy, and
indoor air systems in buildings. It currently delivers dynamic
representations of interactions among occupants and specific
systems in case study buildings and allows the prospective

study only of lighting design tradeoffs in hypothetical build-
ings. The special feature of this framework is that it enhances
the modeling of human factors, using a multiagent simula-
tion (MAS) approach to more realistically represent occupant
behavior.

The integrated modeling framework is incrementally built by
integrating standard packaged engineering models and a new
human factors model created using NetLogo [80]. The MAS
model has undergone quality assurance testing as suggested in
[81] but is subject to the limitations described in [82]. The MAS
model is linked to the aforementioned engineering models
using a common set of input and output files and a Common
Object Request Broker Architecture interface. However, the
current implementation, as described in this paper, is not hot
linked. Instead, the occupant behavior model accesses a lookup
table that contains results from running a wide variety of
scenarios through the packaged engineering model.

As shown in Fig. 4, in the MAS model, we build upon the
approach pioneered in [78] to represent human and environ-
mental interactions within a computational structure. It contains
the following submodels:

1) a building performance simulation submodel that tracks
environmental conditions;

2) a human action simulation submodel that contains a
representation of agency;

3) a mediating submodel that tracks the state of the build-
ing’s controllable components and links the building and
its human occupants;

4) external industry-standard building system models that
help submodel 1 calculate the state of the environment
within the building.

Submodels 1 and 4 manage a set of standard engineering
calculations to determine the state of the architectural environ-
ment, e.g., workspace illumination levels, as functions of the
building’s technical state and occupant behavior.

Submodel 3 describes the building’s technical state as a
function of occupant behavior and the state of the building’s
environment, i.e., it describes objects such as windows and
faucets and whether they are open or shut. In submodel 2,
the human agents, i.e., the building’s occupants, respond to
environmental conditions within the building through chained
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processes of sensation, cognition, deliberation, planning, and
decision making that lead to changes in the states of the
building’s controllable features and in its performance. Humans
are heterogeneous in their sensations, perceptions, desires,
causal beliefs, and prescriptive/planning beliefs; hence, they
heterogeneously act, given similar stimuli. The aforementioned
combined TPB and BDI framework forms the core of submodel
2. This modeling framework allows in silico tests of behavior
modification proposals, as well as tests of the efficacy of
technical innovations such as occupancy sensors.

Modeling inputs include building site conditions and design
choices, and occupant preferences and capabilities. Outputs
include the usability measures of effectiveness, efficiency, and
satisfaction. The model has been calibrated and validated using
occupant survey responses and design data from a case study
building. Half of the occupants were randomly assigned to
the calibration group, and the other half became part of the
validation group.

B. Packaged Engineering Design Tool

This paper is limited to an illustrative application to lighting
design questions, particularly the choice among lighting tech-
nologies in commercial buildings. It uses in modeling step 4
the virtual lighting simulator based on the well-known lighting
design simulation modeling tool RADIANCE [83]. This tool
is “for predicting the distribution of visible radiation in illumi-
nated spaces . . ., which takes as input a 3-D geometric model
of the physical environment and produces a map of spectral
radiance values [using] the technique of ray-tracing [which]
follows light backwards from the image plane to the source(s)”
[83: 1].

The lighting design problem is illustrative of numerous
other problematic human–technology interactions in commer-
cial buildings. Behaviorally robust solutions to this problem
will be relevant to plumbing, HVAC, indoor air quality, solid
waste management, and integrated building design topics. One
particularly valuable aspect of the modeling efforts is to repack-
age the insights from case studies, which are necessarily back-
ward looking and contextualized, in a way that is forward
looking, formally explicit, and more general. In prospective
evaluations, the identities of the actual users are unknown.
However, it is possible to specify typical distributions of oc-
cupant characteristics likely to be found among the users of a
building.

C. Model of Human Behavior

By simulating both occupant behavior and the performance
of building systems, the overall modeling framework can de-
liver the usability metrics of effectiveness, efficiency, and sat-
isfaction. The model of human behavior (modeling step 2) im-
plements a version of the aforementioned BDI theory using an
agent-based modeling approach. Building occupants perceive
their indoor environment, develop preferences, select a desired
outcome and course of action, and implement it. Behavior
may vary from one occupant to another, because perceptions,
preference structures, and the ability to act may vary.

The human behavior model incorporates a utility function
that serves two purposes. First, it plays a role in simulating

human behavior by allowing exogenously established beliefs
to guide the occupant’s choice of action. Second, it measures
occupant satisfaction.

Some building occupants may hold ST values and be open
to change, even if such values require them to devote more
effort to operating the building and to endure more discomfort.
Indeed, some occupants may enjoy the novelty of operating
innovative features despite the effort required, whereas other
occupants may not. The utility function for measuring occupant
satisfaction should therefore account for these possibilities,
along with more traditional factors such as comfort and cost. In
short, occupant utility = f (benefits to self, benefits to others,
costs to self, and costs to others).

The BDI desire or cognitive processor specifies this utility
function for each occupant. The deliberation processor selects
a desired outcome that reflects the priorities embedded in the
occupant utility function. The planning processor generates
plans that increase the occupant utility relative to the status quo.
The decision-making processor selects the plan that yields the
largest increase in occupant utility and implements it.

Several considerations govern the selection of the utility
function’s form. First, because occupant satisfaction depends
on four components, it must be a multiattribute utility function.
Second, by making a strong simplifying assumption that the
occupant views the four components as having preferential,
utility, and additive independence, it is reasonable to specify
an additive formulation [84]. Third, it is reasonable to assess
weights on the four components based on occupants’ responses
to survey questions. Despite its simplifications, decision scien-
tists view this approach as accurate, trustworthy, and easy to use
[85]. The form of the additive multiattribute utility function is

Occupant utility = U(x) =
∑

kiUi(xi) (5)

where
xi performance level of attribute i (normalized by a

max–min range);
U i(xi) single attribute utility for attribute i (the range is 0–1);
ki weighting constant for the utility of attribute i (the

range is 0–1, Σki = 1);
I 1 (benefits to self), 2 (benefits to others), 3 (costs to

self), and 4 (costs to others).
Thus occupant multiattribute utility has a range from 0 to 1.

D. Operationalization

This utility function may be operationalized by redefining
the concepts to have a common directionality and the potential
to be normalized. Each attribute may operationally be defined
as something occupants do not want. This operational choice
also reflects observed behavior, because building users “tend to
not worry about comfort as such, but discomfort . . . [and] they
react when a ‘crisis of discomfort’ has been reached” [86: 664].
Therefore, operationally, we measure

Occupant disutility = f(lack of benefits to self

lack of benefits to others

costs to self

costs to others) (6)
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Fig. 5. Programming steps in the simulation model.

Occupants prefer scenarios with less disutility.
The first reason for calculating the occupant’s multiattribute

utility function is to make a BDI modeling framework opera-
tional based on the TPB. In addition, it provides a relative basis
for measuring satisfaction.

IV. APPLICATION IN LIGHTING DESIGN

To illustrate how our framework performs, we model the
behavior of a building’s inhabitants with regard to lighting
systems and measure their satisfaction with the chosen design.
In addition, the illustrative model gauges the efficiency and
effectiveness of the building’s lighting system. Empirical rela-
tionships established in the literature on lighting-related occu-
pant behavior, as summarized in [87], guided the formulation
of the model. The major programming steps in the model are
summarized in Fig. 5.

The application uses a simplified five-zone single-story com-
mercial building layout (see Fig. 6) that approximates a real
building, with appropriately specified site conditions (sun-
rise/sunset times, cloudiness, electricity prices, and the number
of occupants). The graphical user interface (GUI) allows the
user to input design choices and occupant characteristics. Key
design choices include the size of each room, the percentage
of the exterior wall facing in each cardinal direction that is
glazed with windows, whether a shading device is employed

Fig. 6. Simplified representation of building in the model.

on each window (none, overhangs and fins, and overhangs), the
type of illumination device used in each room (ceiling troffer,
indirect pendent light, or portable task light), and the target
illumination level (based on code requirements for the expected
use). The user can enter technological performance specifica-
tions, including illuminance and rates of energy consumption.
Occupant characteristics include their location (in one of the
five rooms), light sensitivity (prefer the target illumination
level, more light, or less), value structure, and utility function
weights. The modeler specifies the characteristics of up to ten
occupants from the GUI.
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TABLE I
OPERATIONAL DEFINITIONS

The GUI provides an animation to help the user understand
what is happening. Building-level outputs, e.g., energy con-
sumption for lighting, are reported for each time tick and are
also tracked over time. Outputs for each occupant and room are
also reported and accumulated.

A. Model Calibration

We set the initial model parameters to simulate an office
building (with some classrooms) located in New Brunswick,
NJ, USA, with design choices as specified in the building plans.
Percent window coverage for the building was determined to be
10% for the east-facing side of the building, 20% for the north-
facing side of the building, 40% for the west-facing side of
the building, and 32% for the south-facing side of the building.
With regard to shading, the building does not possess overhangs
or fins.

Troffer lighting is the most prevalent type of indoor lighting
throughout the building. Autumnal mid-day light levels within
the building were measured and determined to be between
344 lx and 938 lx in the classrooms, between 219 lx and
276 lx in the hallways, and 503–601 lx in the offices.

We surveyed building occupants to ascertain their values,
beliefs, preferences, and self-reported actions. Based on an
opportunity sample of 91 responses, we used 45 responses for
calibrating the model and 46 responses for validating it.

Table I summarizes the measures used to operationalize the
occupant utility functions. The benefit-to-others (green innova-
tion) and cost-to-others (environmental impact) categories are
collapsed into one measure that is operationalized as the energy
consumption for lighting (in kilowatthours).

Table II summarizes the value structures of occupants in-
cluded in the calibration sample. Based on occupant responses
to a ten-question scale (the short version of Stern’s portrait
values survey [88]), occupants are categorized as green activists
(ST, O), good citizens (ST, C), healthy consumers (SE, O),
or traditional consumers (SE, C) [31]. For comparison, their
proportions in the U.S. population are 64%, 9%, 23%, and
4%, respectively, based on the analysis of data in [88]. These

TABLE II
CALIBRATION SAMPLE AND WEIGHTS (kI)/100

TABLE III
CALIBRATION SAMPLE ILLUMINATION PREFERENCES

TABLE IV
BEHAVIORAL OPTIONS AND THEIR RATINGS

proportions suggest that the survey does not measure pure
intrinsically held values but also captures the effects of social
norms; in other words, the labels overstate the strength of the
stated value sets.

Occupants’ preferences for illumination also vary. Table III
summarizes responses from occupants included in the cal-
ibration sample. Occupants were placed in a closed room,
and illumination levels were varied from 0 lx to 1000 lx, as
measured by a handheld meter. Each occupant specified on their
survey instrument which illumination level they preferred. An
illumination level of 300 lx +/− 100 lx was considered the
normal range.

Potential occupant actions in response to changed lighting
conditions are summarized in Table IV. Note an asymmetry:
when switching lights off, there is a high beneficial impact on
the environment and cost.

One final occupant characteristic is the influence of subjec-
tive norms, determined by answers to two survey questions
based on widely used wording in [27]. This characteristic is
operationalized by increasing the environmental impact cate-
gory weight as the occupant assigns greater influence to the
opinions of other occupants. In the calibration sample, the
average response is 6/10 (“a little influenced”) for all occupant
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TABLE V
COMPARISON OF CALIBRATION AND VALIDATION CASES

Fig. 7. Acceptability of illumination (validation run).

types, except for good citizens, who average 8/10 (“somewhat
influenced”).

B. Model Validation

The model described in the previous section was calibrated
using the site and design characteristics of a real building, along
with half the respondents to the occupant survey. The validation
effort uses the same building’s site and design characteristics,
along with the survey results for the remaining half of the
responding occupants. Because the focus of the model is on
occupant behavior, this validation strategy is reasonable.

The model includes stochastic elements and path-dependent
behavior; hence, it is necessary to perform repeated model
runs and compare the mean performance of the calibration and
validation cases. Table V shows summary usability statistics for
100 24-h simulations of the calibration and validation cases, as
well as the average percent difference between the cases.

Fig. 7 shows the percentage of occupants who perceive illu-
mination levels to be acceptable, very bright, or very dark for
each hour of the day in a validation run. The pattern is similar
(but not identical) in the calibration run. As both modeling runs
suggest, this building has usability problems, particularly with
regard to the ability of occupants to set lighting levels that they
individually prefer.

Additional comparisons, not shown, confirm that the mod-
eling stages of perception, cognition, deliberation, planning,

Fig. 8. How big should the windows be? Note that the window size was
measured as the percentage of exterior wall that is glazed with windows,
from 0% to 90%. Forty simulations were performed for each window %,
holding fixed the lighting type (portable), window treatment (none), occupants’
light sensitivity (dark), and preferences (traditional consumer) but varying the
electricity price.

and decision making are performing as intended, providing face
validity to the model.

The validation runs slightly differ from the calibration runs,
as we might expect. The differences of means tests are signifi-
cant at the 95% confidence level for all of the metrics shown in
Table V, except for effectiveness. For two of the three usability
metrics (efficiency and satisfaction), the cases are within 3%
of one another, but for the effectiveness metric, they diverge
by almost 12%, although nonsignificantly due to its high vari-
ance. Effort and discomfort diverge by smaller amounts. A
part of the divergence is due to random differences between
occupants in the two survey cohorts, chiefly with regard to
illumination preferences. The remainder is attributable to the
model. Nonetheless, this test indicates an acceptable level of
validity, given the subjective nature of much of the occupant
data.

V. RESULTS AND DISCUSSION

Following calibration and validation, we performed a series
of simulations to illustrate how the model performs, gather
insights into the interactions between design choices and oc-
cupant behavior, and show how we can prospectively assess
usability. Selected results are summarized as follows.

Determining how big the windows in a building should be
made is an important early design task. In a series of simu-
lations that span the range from 0% to 90% of the exterior
wall area in windows, bigger windows allow more use of day-
lighting, thereby saving energy and costs. However, windows
that are very big cause significant discomfort and encourage
occupants to expend greater efforts to adjust blinds and lights.
This tradeoff suggests that an optimal window size is in the
range of 30% of the wall area, a figure borne out in the
literature [87]. Fig. 8 illustrates the link between window size
and occupant effort.

The next step in daylighting design is to consider alterna-
tive window treatments, including overhangs, overhangs and
fins, or no window treatment. A simple comparison of means
across scenarios with different window treatments shows no
significant differences in buildingwide performance that result.
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Fig. 9. Interactions between window size and window treatment. Note that
40 simulations were performed for each of the nine window %/window
treatment combinations, holding fixed the lighting type (portable), occupants’
light sensitivity (normal), and preferences (traditional consumer) but varying
the electricity price. Window sizes are 10%, 50%, and 90% of the wall area.
Window treatments include none, overhangs, and overhangs and fins.

However, a look at the window treatments that were applied
to different window sizes shows that treatments affect perfor-
mance. As Fig. 9 illustrates, the larger the window area is,
the more the impact that the treatment has. Buildings with
overhangs and fins that protect large window areas use more
energy but cause less discomfort. Such buildings still use less
energy (and achieve similar dissatisfaction levels) compared to
buildings with small windows and no window treatments.

The final major step in lighting design is to select artifi-
cial lighting technologies that will be used in the building to
supplement the daylight. One investigation of whether troffers,
indirect pendants, or portable tasklights perform best shows that
portable lighting consistently performs better than indirect pen-
dants along key metrics; however, troffers show wide variation
that prevents us from drawing conclusions. One possible expla-
nation for the varied performance of troffers is the occupants’
values systems. However, simulations that vary occupant values
indicate that the different preferences of green activists, good
citizens, healthy consumers, and traditional consumers do not
explain the variation in troffers’ performance.

Fig. 10 resolves the question, showing that occupants’ var-
ied light sensitivities drive the variation in the troffers’ per-
formance. Portable lighting tends to use less energy and is
slightly less dissatisfying than indirect pendants or troffers
across the range of light sensitivities, with one important
exception. Occupants who prefer rooms to be darker than
normal have trouble using troffers, because they are not lo-
cally adjustable. They frequently turn the lights on and off
during the day in pursuit of greater comfort, which increases
their levels of effort. The lights end up off most of the
time, which saves energy and cost. The cost savings outweigh
the increased effort and discomfort, paradoxically decreasing
dissatisfaction.

The results suggest that the consideration of occupant behav-
ior will, indeed, lead designers to different choices of lighting
systems. The key is to bring the objective and subjective
aspects of the lighting experience together within a common
framework [89]. The simulations also show that it is possible
and productive to model usability on a prospective basis. The
usability of the model itself was shown to be adequate in a

Fig. 10. Influence of light sensitivity on the lighting technology choice. Note
that 1440 simulations were performed for each lighting technology, holding
fixed the window % (50%) but varying the window treatment, occupants’ light
sensitivity and preferences, and electricity price.

third-party evaluation [90]. Interested readers should download
the model.1

VI. CONCLUSION

In this paper, we have shown that one attractive feature
of this framework for assessing usability is that better data
can yield better modeling. Future work should develop larger
more robust databases about occupant sensitivities, preferences,
and reported behaviors in a wider variety of contexts. These
subjective data should be paired with monitoring protocols to
collect objective data on occupant behavior and overall building
performance. Such fieldwork will allow more complete calibra-
tion and validation of this framework and similar simulation
models in the future.

It will also be valuable to learn how the behavioral model
can be linked to other building system design tools, particularly
HVAC and plumbing simulators. The agent-based implemen-
tation of the BDI framework should be robust enough to work
with this full range of systems. Eventually, as the state of the
art in BIM advances, it should be possible to perform more
completely integrated assessments of whole-building designs.
Such assessments should show us, prospectively, how well
designs perform, given realistic occupant behavior.
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