

Why Should Utility Customers Support Energy Efficiency Investments in Rates?

A Briefing for the New Mexico PRC

Presented by Richard Sedano

September 15, 2011

The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org

Introducing RAP and Rich

- RAP is a non-profit organization providing technical and educational assistance to government officials on energy and environmental issues. RAP Principals all have extensive utility regulatory experience.
 - Richard Sedano directs RAP's US Program. He was commissioner of the Vermont
 Department of Public Service from 1991-2001 and is an engineer.

Today's Briefing

- How States Supervise Energy Efficiency

 Implementing Energy Efficiency Programs and Associated Policy Issues
- New Mexico Efficient Use of Energy Act
- Avoid jargon, or explain it clearly

Briefing Objectives

- <u>Framework</u> to assess energy efficiency policy
- Assess the value of investing in energy efficiency through utility rates
- Discuss and become familiar with typical commission practices addressing energy efficiency
- Flag matters that are controversial
- Position commission to make decisions and provide clarity for stakeholders

Energy Efficiency: one of a group of customer resources

- A principal investment tactic to manage the power system of the future
- Customers are resources for:
 - Year round load reductions with <u>energy</u> <u>efficiency</u>
 - Opportunistic load reductions with <u>demand</u> response for emergencies and price reduction
 - <u>Customer Generation</u> offsetting grid supply and losses, perhaps adding on-site reliability

Electricity and Natural Gas

- Analogous points regarding energy efficiency apply to electricity and natural gas
 - Details are distinct and important in implementation

Energy Efficiency in New Mexico Why? Why Not?

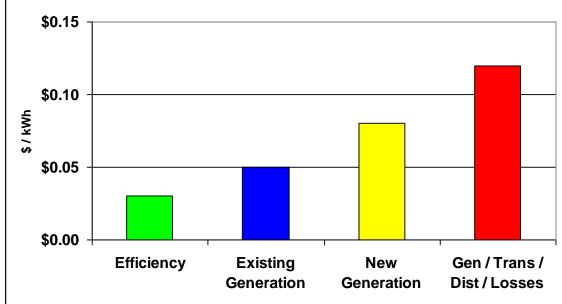
- Costs less than alternatives
- Less risky than alternatives
- Market failures
- The Law
- Consumers Like It
- Builds businesses
- Coherent Government

- Rates may go up
- Can be done badly
- Hard to oversee
- Market interference
- Energy growth signals economic growth

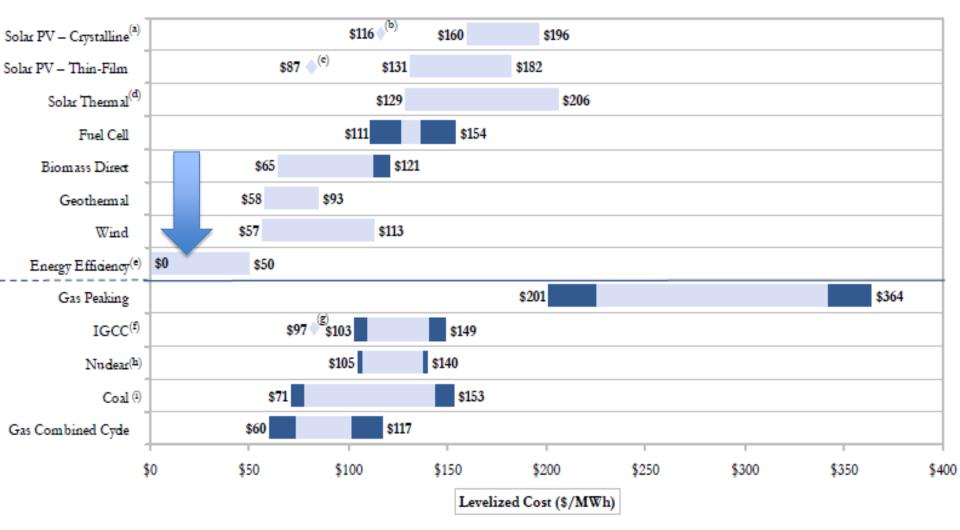
Energy Efficiency in New Mexico Why? Why Not?

• Costs less than alternatives

Energy Resources: Costs trending up on top of deferred maintenance


- Combustion sources
 - with new pollution controls
- Nuclear already too expensive for market
- Fuel Commodity prices risk going higher
 A dash to gas would propel prices
- Renewable costs trending down, but larger scale integration brings new system costs

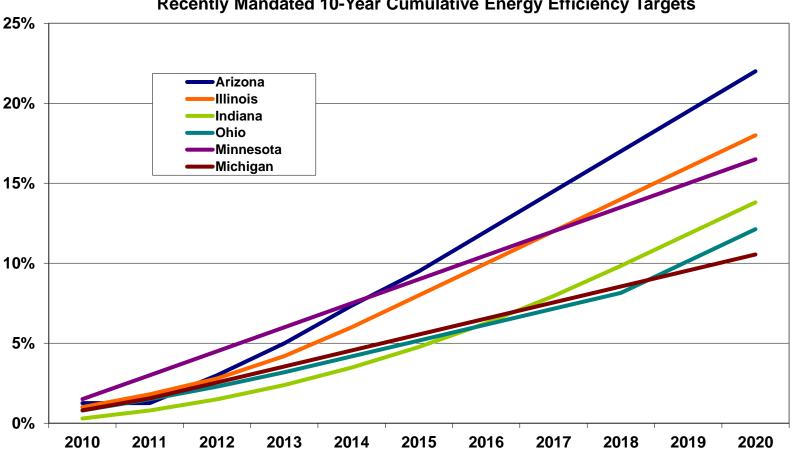
There is already "upward rate pressure" throughout the US


- Marginal costs > Average Cost
 - (the cost to make and to sell the next kWh is greater than the cost customers see to make the energy they use now)
- Energy Efficiency can diminish upward rate pressure over time
 - Upward rate pressure associated with growth and capital replacement
 - <u>EE can reduce the growth induced pressure</u>

Cost of Energy Efficiency

Mature energy efficiency programs are being delivered at a cost to consumers of
 3 ¢ per kWh

More detail about energy efficiency in comparison with **new** supply



Source: Lazard. (February 2009). *Levelized Cost of Energy Analysis- Version 3.0.* <u>http://blog.cleanenergy.org/files/2009/04/lazard2009_levelizedcostofenergy.pdf</u>

Energy Efficiency Program Spending and Savings

- For highest spending states (electric):
 - Spending ranges beyond 4% of utility revenues
 - Savings are approaching 2% of sales and 2% of peak
- Realistic to consider offsetting or exceeding load growth with energy efficiency alone
 - or in combination with customer-sited generation and demand response

Savings Trajectories for Several States

Recently Mandated 10-Year Cumulative Energy Efficiency Targets

Energy solutions for a changing world

Cumulative Savings Are Substantial

- Energy Efficiency can avoid significant, more expensive investments
 - If there is a sustained commitment to it over time
 - Energy Efficiency is not a quick fix

How do we measure value for energy efficiency programs?

- Benefit/Cost tests are common in all states with energy efficiency programs
- There is a range of standard B/C tests
 - Each asks the question from a point of view
 - Participants (marketing programs and services)
- Utility (total system costs, EE as a resource)
 - Non-participants (what will rates do?)
 - General Economy (quantified effects)
 - General Economy (quant + unquantified factors)

PCT

RIM

TRC

SCT

Defining Cost Tests: 5 points of view

Cost Test	Acronym	Key Question Answered	Summary Approach
Participant Cost Test	РСТ	Will the participants benefit over the measure life?	Comparison of costs and benefits of the customer installing the measure
Utility/Program Administrator Cost Test	UCT/PAC	Will utility bills increase?	Comparison of program administrator costs to supply side resource costs
Ratepayer Impact Measure	RIM	Will utility rates increase?	Comparison of administrator costs and utility bill reductions to supply side resource costs
Total Resource Cost	TRC	Will the total costs of energy in the utility service territory decrease?	Comparison of program administrator and customer costs to utility resource savings
Societal Cost Test	SCT	Is the utility, state, or nation better off as a whole?	Comparison of society's costs of energy efficiency to resource savings and non- cash costs and benefits

 Test most broadly used in US (and specified in the New Mexico rules): Total Resource Cost Test (TRC)

Table 4-1. Universe of Energy and Capacity Benefits for Electricity and Natural Gas

Electricity Energy Efficiency					
Energy Savings	Capacity Savings				
Market purchases or fuel and operation and maintenance costs	Capacity purchases or generator construction				
System losses	System losses (peak load)				
Ancillary services related to energy	Transmission facilities				
Energy market price reductions	Distribution facilities				
Co-benefits in water, natural gas, fuel oil, etc.	Ancillary services related to capacity				
Air emissions	Capacity market price reductions				
Hedging costs	Land use				
Natural Gas En	ergy Efficiency				
Energy Savings	Capacity Savings				
Market purchases at city gate	Extraction facilities				
Losses	Pipelines				
Air emissions	Cold weather action/pressurization activities				
Market price reductions	Storage facilities				
Co-benefits in water, natural gas, fuel oil, etc.	LNG terminals				
Hedging costs					

Cost-effectiveness Framework

Testing whether an alternative plan is lower cost is the basic building block of CE analysis

Step 1 Evaluate the costs of EE program

Step 2 Evaluate the change in costs of your preferred supply plan ("avoided costs")

• These are the 'benefits' of implementing your program

Step 3 Compute the difference (or ratio)

More formally, net present value difference of benefits and costs...

Net Benefits (difference)	Net Benefits _a (dollars)	= NPV \sum benefits _a (dollars) -NPV \sum costs _a (dollars)	
Benefit-Cost Ratio	Benefit-Cost Ratio _a	$= \frac{NPV \sum benefits_a (dollars)}{NPV \sum costs_a (dollars)}$	

Summary of Costs and Benefits

- High level summary of costs and benefits included in each cost test
- Each state adjusts these definitions depending on circumstances
- Details can significantly affect the type of energy efficiency implemented

Component	РСТ	UCT	RIM	TRC	SCT
Energy and capacity related avoided costs.	-	Benefit	Benefit	Benefit	Benefit
Additional resource savings	-	-	-	Benefit	Benefit
Non-monetized benefits	-	-	-		Benefit
Incremental equipment and install costs	Cost	-	-	Cost	Cost
Program overhead costs	-	Cost	Cost	Cost	Cost
Incentive payments	Benefit	Cost	Cost	-	-
Bill Savings	Benefit		Cost	-	-

Table 3-9. Total Resource Cost Test for SCE Residential Energy Efficiency Program

TRC Calculations					
		Benefits	Costs		
Program overhead			\$	3,494,619	
Program incentives					
Measure costs (net)			\$	41,102,993	
Energy savings (net)	\$	187,904,906			
Bill savings					
Monetized emissions (net)		(included in energy savings above)			
Non-energy benefits					
Total	\$	187,904,906	\$	44,597,612	
Net benefit	\$143,307,294				
Benefit-cost ratio	4.21				

Table 6-4. Benefits and Costs Included in the Total Resource Cost Test

Benefits and Costs from the Perspective of All Utility Customers (Participants and Non-Participants) in the Utility Service Territory					
Benefits	Costs				
 Energy-related costs avoided by the utility Capacity-related costs avoided by the utility, including generation, transmission, and distribution 	 Program overhead costs Program installation costs Incremental measure costs (whether paid by the customer or the utility) 				
 Additional resource savings (e.g., gas and water if utility is electric) Monetized environmental and non- energy benefits (see Section 4.9) Applicable tax credits (see text) 					

Source: Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects.

The TRC shows the net benefits of the energy efficiency program as a whole. It can be used to evaluate energy efficiency alongside other regional resources and communicate with other planning agencies and constituencies.

Applying the Tests

- A **screen**: program "passes" if B/C exceeds a threshold value (1? 2?) for a specific test
 - Budget limits may force <u>portfolio</u> choices among programs that pass
- A **guide**: program passes if regulator judges it passes after considering all B/C test results
 - and comparing with other programs if \$ limited

for a changing world

y, regulator decides what "passes"

Timing of Energy Efficiency Costs and Benefits

- Costs happen now
- Benefits accrue over time
- Embracing energy efficiency means embracing a long view
 - Consistent with other significant utility investments
- Most states expense costs, leading to immediate rate effects

Discount Rate: Valuing savings over time depends on perspective

Table 4-3. The Use of Discount Rates in Cost-Effectiveness Tests

Tests and Perspective	Discount Rate Used	lllustrative Value	Present Value of \$1 a Year for 20 Years*	Today's Value of the \$1 Received in Year 20
РСТ	Participant's discount rate	10%	\$8.51	\$0.15
RIM	Utility WACC	8.5%	\$9.46	\$0.20
PACT	Utility WACC	8.5%	\$9.46	\$0.20
TRC	Utility WACC	8.5%	\$9.46	\$0.20
SCT	Social discount rate	5%	\$12.46	\$0.38

Source: Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects.

* This value is the same as not having to purchase \$1 of electricity per year for 20 years.

Energy Efficiency in Utility Resource Plans

- All supply-side and demand-side options
- Evaluated on a comparable basis
 - EE reduces fuel price, market price and environmental risks
 - EE can delay costly, riskier power plant and other investments
- EE potential study done periodically
- Least cost action plan includes all EE that is part of the best cost/risk portfolio

Integration of EE into Resource Planning and Investment

- Energy efficiency can be the least cost alternative for meeting consumer electricity needs if planners **ask the right questions**
 - Can energy efficiency (reduced load growth) alleviate the apparent need for this new transmission line?
 - Can energy efficiency achieve sustained zero load growth?

IRP or a Resource Standard?

- If legislature decides, that's that
- If it is up to the commission, think...
 - Top down or bottom up?
 - How much rigor (work) goes into EE plan?
 - How aggressive?
- Arkansas and Arizona choose a standard

 Arizona is aggressive
- Missouri chooses IRP

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives

Large Asset Plans are Hard to Manage

• Financial markets are tougher now than in prior build periods

Growth in Electric Use and Demand has Risks

- More <u>power generation</u> (cost control, siting)
- More exposure <u>to fuel price increases</u>
- More exposure to <u>volatility</u> for fuel price and availability
- More exposure to <u>energy security</u> concerns
- More <u>transmission</u> driven by load growth
- More <u>air emissions</u> (caps) and <u>water use</u>

Balancing Consumer and Utility Risk

- Regulator in the middle
- Many states and utilities actively avoiding large asset investments now
 - Especially with energy efficiency most costeffective and available
 - Reliable
 - Targetable
 - Modular
 - Manageable

"Is Energy Efficiency 'Real'?" Experience says "Yes!"

- Utilities, especially system operators, ask an important question
 - They want to know that when the system needs the promised effects of energy efficiency that <u>EE will</u> <u>deliver</u> when the chips are down, and they start out skeptics (operators seem to want a "button")
 - <u>EM&V</u> is key (when are "deemed savings" OK?)
 - Some savings are more "hard wired" than others
 - All programs deliver some resource benefit
 - Better question: "How to get an <u>accurate</u> and <u>unbiased</u> measure of system benefit from energy efficiency?"

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives

Rates may go up

Energy Efficiency is an investment that is expensed

- Energy Efficiency is a cost and <u>adds to</u> <u>rates</u>
 - Average across the US is less than 1%
 - States spending the most add over 4%
- Investments accumulate and <u>avoids</u> <u>generation, transmission, distribution cost</u>
- By definition of the Benefit-Cost Tests, total costs to consumers over time go down with an EE portfolio that passes

Participants - Non-Participants

• Participants clearly benefit from energy efficiency programs

– What about non-participants?

- <u>Non-participants benefit from the system</u> <u>benefits</u> derived from these investments
 - As they benefit from investments in system reliability upgrades remote from their service
 System benefit (EE) = Avoided costs

	Costs	Benefits
Participants	Pay for programs in rates Pay to participate in programs	Get system benefits from program savings Gets personal benefits from participation
Non-participants	Pay for programs in rates	Get system benefits from program savings

I think those concerned about this trade-off for nonparticipants are really concerned that the system benefits <u>do not exist</u> or <u>are unreliable</u> or <u>are over-stated</u>. For me, there is ample evidence that system benefits calculations <u>are accurate</u>. This concern motivates regulators and system planners on EM&V.

Install EE Adjust Rates Adjust Capital Expansion Plan Short-Term Medium-Term Long-Term Participant Better off Better off Better off Rates may be Non-Participant Rates are higher Unaffected higher or lower ROE unchanged **ROE** unchanged Utility ROE ower Earnings unchanged Earnings lower

39

Time

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives
- Market failures

• Rates may go up

Some Energy Efficiency Happens Naturally

- Many products are more efficient now, so when we replace them, efficiency happens

 Refrigerators, pumps, motors, HVAC, lights
- Some customers see the potential to benefit, know what to do about it and they invest
 - But many do not...

Why Programs Make a Difference in Helping Customer to say "Yes"

- Decision-makers (people like us) do not always act in our own best interest
- There are clear reasons
- If we acted like perfect market actors, programs would not be needed because
 - We know all we need to know
 - All product and service choices are available
 - Financing easily available for good projects

Without Programs, Markets Fail, Efficiency Investments that Benefit All Are Lost

- Why?
 - Lack of awareness
 - Lack of knowledge about how to be informed
 - Lack of knowledge about how to act
 - Lack of time to find out, easier to just replace in kind
 - Lack of available products and services
 - Lack of control of, motivation for the decision
 - Agency problem, or split incentive problem
 - Money
 - Lack of it forever (low income)
 - Lack of it right now (financing)
 - Competing uses (as with industrial capital budgets)

Timing for Energy Efficiency Investments

- Make the most of an <u>opportunity</u>
 - Or lose the opportunity
 - Build a new building
 - Replace failed equipment
- Replace functioning device to save money
 - <u>Retrofit</u> or "replace before burnout"
 - Weatherize an existing building

It's OK that markets fail sometimes

- They fail because we humans have
 - Imperfect information and accountability
 - Limited time
 - Limited money
- Most instances, that's just too bad
- In utilities, markets for energy efficiency failing means we all pay too much for avoidable resources – a "commons" issue
 So we invest to fix (transform) the market

Programs are Business Plans that Address Market Barriers to Energy Efficiency

- <u>Programs</u> include <u>strategies</u> that identify the <u>market failures</u> standing in the way of decision-maker, and lay out the information, services and incentives necessary to <u>achieve a percentage of</u> <u>decision-makers saying "yes"</u>
 - And ways to measure effectiveness and when a program needs to change or to end

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives
- Market failures
- The Law

• Rates may go up

New Mexico Efficient Use of Energy Act, PRC Rule Are Clear about Directing Energy Efficiency Investment

- Act is as unambiguous about directing energy efficiency as there is in US – Many "shalls"
- Clear appreciation of value for clear direction and adjustments in regulation to reflect the new <u>utility mission to sell less</u>
 - Balance of direction and latitude to utilities with good reporting requirements

Key Words and Phrases from the Act (with some synthesis by me)

- All cost-effective
- Essential affordable, reliable
- Under-utilized
- Re: utilities: Incentives, disincentives, profit, cost recovery flexibility
- A goal and targets
- Collaboration
- Competitive services
- Self-direct for industrial

- Non-energy benefits appear in policy, TRC
- EM&V independence
- Integrated resource plan
- Economically disadvantaged and Wx
- Customer communication
- Demand response distinct
- (adapt for) munis, coops
- Third party authorized

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives
- Market failures
- The Law

- Rates may go up
- Can be done badly
- Hard to oversee

Energy Efficiency isn't easy

- Intervening in markets is done all the time, sometimes to good effect, sometimes not
 – Regulators intervene in markets for public interest
- Energy efficiency is <u>voluntary</u> to customers
 - Does any other utility activity get as personal with so many customers?
 - How to get customers to say "yes"
- Energy efficiency is not a traditional utility activity

– Not always a good fit with management and staff

Regulators have tried to adjust regulation to adapt to energy efficiency

- Solutions to address incentives to sell more and to resist selling less (the "<u>throughput</u> <u>incentive</u>")
- Performance incentives
- Cost recovery riders
- Collaboratives
- Energy efficiency resource standards
- Penalties
- Non-utility administration
- Other mechanisms

Throughput Incentive: A Disincentive for Efficiency

- A fact of the math of traditional regulation
- Rate case establishes revenue requirement
 Rate is a calculation at the end
- Rates include a <u>contribution to fixed cost</u>
- Selling less than expected means utility comes up short on revenues to cover costs already approved in a rate case

– Selling more creates free cash flow

Chronic Issues with Throughput Incentive

- Is it a good idea for utilities to be motivated to sell more?
 - With capital and commodity risks and environmental issues looming
- Should utilities be more focused financially on what customers value?
 - Reliability
 - Service

Throughput incentive for those preferring numbers What actually

preterring numbers			happens				
The Rate Case	Made-up-Co		Revenue Req.		\$115,384,615		
Expenses	\$100,000,000		Sales (-1%)		990,000,000		
Sales (MWh)	1,000,000,000	Actua		I	\$114,230,769		
Rate Base	\$100,000,000		Reven	iue			
Allowed ROE	10.00%	Short Short Energy efficiency hits utility returns hard		fall	\$1,1	53,846	
Allowed Return	\$10,000,000			fall % ret	-11.54%		
Taxes (35%)	\$5,384,615			Or this could happen			
Return + Taxes	\$15,384,615			ity		\$115,384,615	
Revenue Req.	\$115,384,615			Sales (+1%)		1,010,000,000	
Rate per MWh	\$0.115			Actual Revenue		\$116,538,461	
				Excess		\$1,153	3,846
Fnorgueolutions				Excess% of ret.		11.54%	

Throughput Incentive Corrections

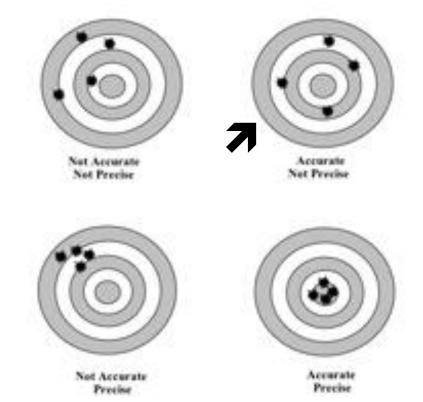
- **Frequent rate cases** will reset rates to cover fixed costs
- Future Test Year forecasts EE effects
- Lost contributions to fixed costs can be added back to revenue requirement
- Rates can be reconciled periodically to align with prior revenue requirement **Decoupling**
- Customer charge can be increased
- Regulation disciplines utility, no

Install EE Adjust Rates Adjust Capital Expansion Plan Short-Term Medium-Term Long-Term Participant Better off Better off Better off Rates may be Non-Participant Rates are higher Unaffected higher or lower ROE unchanged **ROE** unchanged Utility ROE ower Earnings unchanged Earnings lower

57

Time

Work for Regulators: Leadership


- Enforcing a **stable** environment for utilities and private businesses
 - Manage expectations, maintain consistency
 - Approving programs
 - Adjusting programs
 - Evaluation, measurement and verification
 - Flak from those not convinced about value
- More attention to energy efficiency than many other facets of utility regulation

Cost Control and Energy Efficiency

- Regulators are always concerned about utility costs
 - Energy efficiency costs are no exception
- A distinction: if more cost-effective investments are available, spending more money pays dividends.
- **Measure outputs**: i.e. savings per \$ spent – Focus on admin costs can be misplaced

Right-sizing Good Impact Evaluation

- Accuracy vs. Precision
- Bias
- Go for costeffective and useful balance

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives Rates may go up
- Less risky than alternatives Can be done badly
- Market failures
- The Law
- Consumers Like
 It
- Builds businesses

- Can be done badly
- Hard to oversee

Consumers Like Energy Efficiency

- More and better products in the store

 High, not perfect correlation to quality
- Better services
 - Contractors, suppliers specifying best "stuff"
- Lower Bills
- J.D. Power ratings seem to improve

 Service not just for big customers

Not just because of a giveaway

- In the early years of energy efficiency, participating consumers see there own benefits
- With cumulative energy efficiency and reports in the press, <u>consumers can see</u> <u>that costly investments are avoided</u> by the efficiency by themselves and their neighbors and local businesses

Local businesses get and stay modern

- Energy efficiency is a labor intensive activity
 - Person to person contacts
 - Services in buildings
 - Methods and products are up to date
 - Better buildings and industrial processes
 - Demand grows into more jobs
 - Input Output models (used for state revenue forecasts) measure economic effects of EE

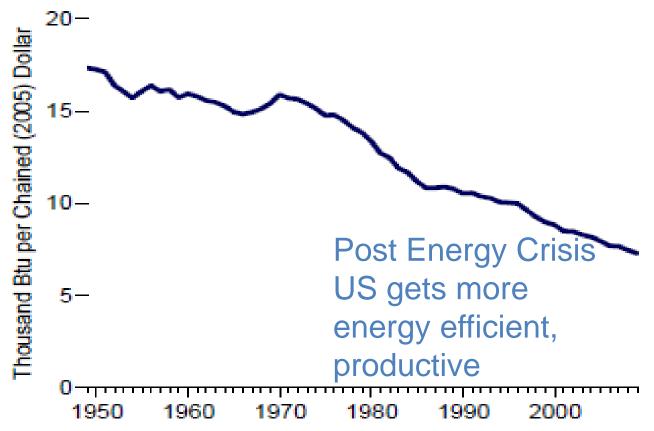
Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives
- Market failures
- The Law
- Consumers Like It
- Builds businesses

- Rates may go up
- Can be done badly
- Hard to oversee
- Market interference
- Energy growth signals economic growth

Does the utility energy efficiency activity stifle competition?

- It can, but it does not have to
- Energy Service Companies do cover some of the market
 - Institutional and Government customers tolerate long paybacks, shared savings deals
 - Larger customers making the size of the deal worth while
- Programs can provide standard offers for these customer groups to aid ESCOs


Most Energy Efficiency Opportunities Have No One Competing

• Evidence: it is not happening now

 All recent potential studies how unmet potential for cost-effective energy efficiency

- So for most situations, energy efficiency is a monopoly activity, like distribution
- Utilities can use competitive bidding to acquire services from the market

Energy Consumption per Real Dollar² of Gross Domestic Product, 1949-2009

Source: US Energy Information Administration, Annual Energy Review 2009; GDP in chained (2005) dollars;

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives
- Market failures
- The Law
- Consumers Like It
- Builds businesses
- Coherent Government

- Rates may go up
- Can be done badly
- Hard to oversee
- Market interference
- Energy growth signals economic growth

Energy Efficiency Makes Government Look Good

- Investing in end uses with 2x benefit-cost ratios looks like a good investment to citizens
 - Seems like a win-win
 - Publicity can point to <u>avoiding risky</u> <u>investments</u> and <u>other system benefits</u> while benefiting state interests
 - Commission uses discretion to find the sweet spot on rates and program budget addressing concerns of price sensitive customers

Energy Efficiency in New Mexico Why? Why Not?

- Costs less than alternatives
- Less risky than alternatives
- Market failures
- The Law
- Consumers Like It
- Builds businesses
- Coherent Government

- Rates may go up
- Can be done badly
- Hard to oversee
- Market interference
- Energy growth signals economic growth

Resources

- <u>National Action Plan for Energy Efficiency</u>
- <u>State Energy Efficiency Action Network</u>
- <u>RAP state energy efficiency database</u>
 And other <u>RAP resources</u>
- <u>American Council for an Energy Efficient</u>
 <u>Economy (ACEEE), especially juried papers</u>
- Lawrence Berkeley National Lab

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Richard Sedano rsedano@raponline.org 802 498 0710

US

China EU

Global The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, Vermont 05602 phone: 802-223-8199 fax: 802-223-8172 www.raponline.org

Appendix B/C tests

Energy solutions for a changing world

Table 2-3. Summary of Cost-effectiveness Test Results for Four Energy Efficiency Programs

Test	Southern California Edison Residential Energy Efficiency Incentive Program	Avista Regular Income Portfolio	Puget Sound Energy Commercial/ Industrial Retrofit Program	National Grid MassSAVE Residential			
	Benefit-Cost Ratio						
РСТ	7.14	3.47	1.72	8.81			
PACT	9.91	4.18	4.19	2.64			
RIM	0.63	0.85	1.15	0.54			
TRC	4.21	2.26	1.90	1.73			
SCT	4.21	2.26	1.90	1.75			

Source: E3 analysis; see Appendix C.

Note: The calculation of each cost-effectiveness test varies slightly by jurisdiction. See Appendix C for more details.

Table 3-3. SCE Residential Energy Efficiency Incentive Program Benefits

Net Benefit Inputs							
Resource savings	Units		\$				
Energy (MWh)	Energy (MWh) 2,795,290		187,904,906				
Peak demand (kW)		-					
Total resource savings	\$	187,904,906					
Participant bill savings	\$	278,187,587					
Emission savings	Tons						
NOx	421,633						
PM ₁₀	203,065						
CO ₂	1,576,374						

Table 3-4. SCE Residential Energy Efficiency Incentive Program Costs

Cost Inputs		
Program overhead		
Program administration	\$	898,548
Marketing and outreach	\$	559,503
Rebate processing	\$	1,044,539
Other	\$	992,029
Total program administration	\$	3,494,619
Program incentives		
Rebates and incentives		1,269,393
Direct installation costs	\$	564,027
Upstream payments	\$	13,624,460
Total incentives	\$	15,457,880
Total program costs		18,952,499
Net measure equipment and installation	\$	41,102,993

Table 3-5. Summary of Cost-Effectiveness Test Results (\$Million)

Test	Cost	Benefits	Ratio	Result
РСТ	\$41	\$294	7.14	Bill savings are more than seven times greater than customer costs.
PACT	\$19	\$188	9.91	The value of saved energy is nearly 10 times greater than the program cost.
RIM	\$297	\$188	0.63	The reduced revenue and program cost is greater than utility savings.
TRC	\$45	\$188	4.21	Overall benefits are four times greater than the total costs.
SCT	\$45	\$188	4.21	Same as the TRC, as no additional benefits are currently included in the SCT in California.

Table 3-6. Participant Cost Test for SCE Residential Energy Efficiency Program

PCT Calculations						
	Ве	nefits	Costs			
Program overhead						
Program incentives	\$	15,457,880				
Measure costs			\$	41,102,993		
Energy savings						
Bill savings	\$	278,187,587				
Monetized emissions						
Non-energy benefits						
Total	\$	293,645,466	\$	41,102,993		
Net benefit		\$252,542,	473			
Benefit-cost ratio		7.1				

Table 3-7. Program Administrator Cost Test for SCE Residential Efficiency Program

PACT Calculations						
		Benefits		Costs		
Program overhead			\$	3,494,619		
Program incentives			\$	15,457,880		
Measure costs						
Energy savings (net)	\$	187,904,906				
Bill savings						
Monetized emissions (net)		0				
Non-energy benefits						
Total	\$	187,904,906	\$	18,952,499		
Net benefit		\$168,952,407				
Benefit-cost ratio		9.9	1			

Table 3-8. Ratepayer Impact Measure for SCE Residential Energy Efficiency Program

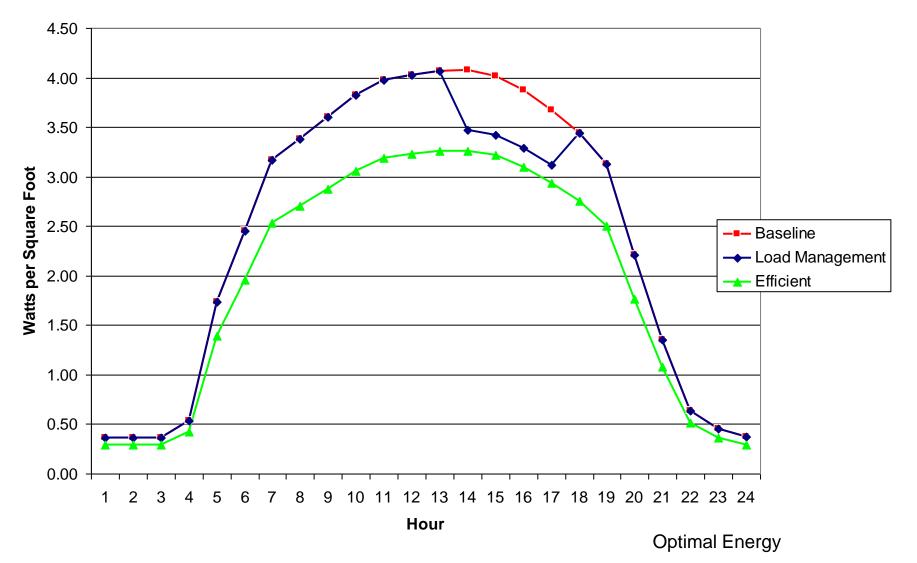
RIM Calculations							
	Benefits Costs			Costs			
Program overhead			\$	3,494,619			
Program incentives			\$	15,457,880			
Measure costs							
Energy savings (net)	\$	187,904,906					
Bill savings (net)			\$	278,187,587			
Monetized emissions (net)		0					
Non-energy benefits							
Total	\$	187,904,906	\$	297,140,085			
Net benefit		(\$109,235,180)					
Benefit-cost ratio		C	.63				

Table 3-9. Total Resource Cost Test for SCE Residential Energy Efficiency Program

TRC Calculations						
		Benefits		Costs		
Program overhead			\$	3,494,619		
Program incentives						
Measure costs (net)			\$	41,102,993		
Energy savings (net)		187,904,906				
Bill savings						
Monetized emissions (net)	(included in energy savings above)					
Non-energy benefits						
Total	\$	187,904,906	\$	44,597,612		
Net benefit	\$143,307,294					
Benefit-cost ratio		4.21				

Table 3-10. Societal Cost Test for SCE Residential Energy Efficiency Program

SCT Calculations							
	Benefits Costs			Costs			
Program overhead			\$	3,494,619			
Program incentives							
Measure costs (net)			\$	41,102,993			
Energy savings (net)		187,904,906					
Bill savings							
Monetized emissions (net)	(i	ncluded in ener	gy savi	ngs above)			
Non-energy benefits (net)	\$ 0						
Total	\$	187,904,906	\$	44,597,612			
Net benefit		\$143,307,294					
Benefit-cost ratio		4	.21				


Lost Contribution to Fixed Costs

- Calculating the lost contribution
 - Energy efficiency quantity
 - Value of savings
- Booking and Deferring
 - How long is amortization period?
 - Return of or return on? At what rate?
- Experience in 90s indicates big fights accompany this device

Decoupling vs. Lost Contribution

- Each makes utility indifferent to lost sales and associated lost contribution to fixed COStS (neither motivates)
- Choice should promote energy efficiency
- Decoupling a more comprehensive solution to utility motivation to sell more
 - Utility motivation could better be about what customers care about (i.e service, reliability)

Combined Commercial Cooling and Lighting Loadshape Baseline, Load Management (STDR), and Energy Efficiency

Combined Commercial Cooling and Lighting Loadshape Baseline, Load Management (STDR), and Energy Efficiency

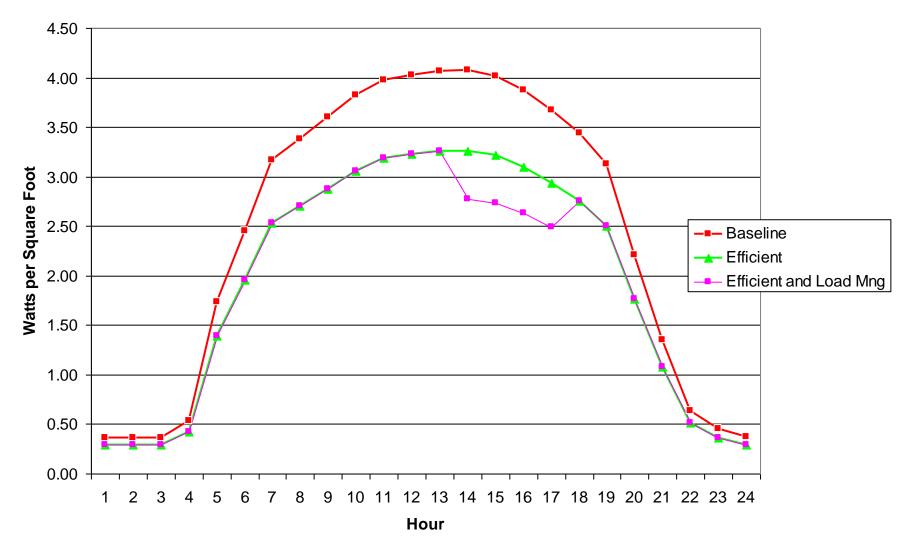
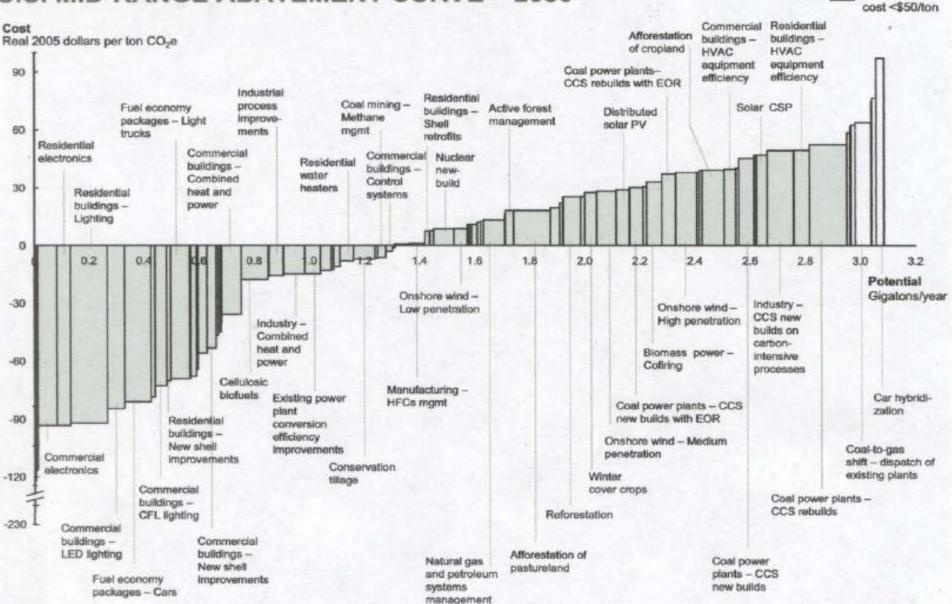



Exhibit B

U.S. MID-RANGE ABATEMENT CURVE - 2030

Abatement

Why Is Financing Not Used as Often as You Might Expect?

- Needs
 - Source of capital
 - Utility reluctant, ill-suited
 - Ways to reduce risk
 - Dealing with loss risk via a reserve
 - Use the utility bill? Property tax bill?
 - Aggregation of loan "commodity"
 - Understanding distinct markets

Financing a Tool, not THE ANSWER

- Finance what?
 - Need good programs to steer decision-makers to good investments
 - Some don't need financing
 - Some don't want financing
- Financing can be an expensive way to motivate customer to action

More Profound Economic Concern: Energy Use = Prosperity?

- The economy grew in step with energy use when energy was a declining cost industry
 - Changed in Energy Crisis in 1970s
 - Energy no longer "unlimited" or "without effects to the rest of the economy or environment"

Productivity + Efficiency = Prosperity

• Results: spontaneous efficiency by consumers and other engines of productivity enable growth without more energy consumption

Notes to Lazard slide

Note: Darkened areas in horizontal bars represent low end and high end levelized cost of energy corresponding with ±25% fuel price fluctuations.

- (a) Low end represents single-axis tracking crystalline. High end represents fixed installation.
- (b) Represents estimated implied levelized cost of energy in 2012, assuming a total system cost of \$3.50 per watt for single-axis tracking crystalline.
- (c) Represents a leading thin-film company's targeted implied levelized cost of energy in 2012, assuming a total system cost of \$2.00 per watt.
- (d) Low end represents solar tower. High end represents solar trough.
- (e) Estimates per National Action Plan for Energy Efficiency; actual cost for various initiatives varies widely.
- (f) High end incorporates 90% carbon capture and compression.
- (g) Represents estimated implied levelized cost of energy for Southern Company's proposed IGCC facility in Mississippi that is expected to be in service in 2013, assuming a total system cost of \$3.00 per watt and 50% carbon capture, per Southern Company public comments.
- (h) Does not reflect decommissioning costs or potential economic impact of federal loan guarantees or other subsidies.
- Based on advanced supercritical pulverized coal. High end incorporates 90% carbon capture and compression.