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Study Problem Statement

• Demand for electricity is systematically increasing for an 
aging system of transmission line, stations, sub-stations, etc.

• Power system network expansion and utility operations must 
evolve to reduce greenhouse gas emissions

• Trade-offs between cost, reliability and emissions (CO2, SO2, 
NOx) must be explicitly considered as part of any expansion 
plan

• Distributed power generation can offer distinct benefits

• Analytical planning and optimization tools are required for 
modeling and planning – our contribution!
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Power System Planning & Trade-off Studies are 
Narrowly Focused

• Reliability
– Determination of unmet demand, loss of load 

probability, standard metrics (CAIDI, SAIFI)
– Tools: historical data, simulation, stochastic models

• Expansion
– Determination of plans:

• where to add power generation & transmission 
capacity

• what technology (coal, solar, wind, etc.)
• time horizon for expansion

– Tools: engineering economics studies, mathematical 
programming

• Operations
– Power generation dispatching in response to demand 

and availability of generating units & transmission
– Tools: standard dispatching rules, mathematical 

programming
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Reliability

Expansion

Operation

Power System Planning & Trade-off Studies are 
Narrowly Focused
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Reliability

Expansion

Operation

• Power Distribution System Planning with Reliability 
Modeling and Optimization, Tang, Y., IEEE 
Transactions on Power Systems, Vol.11, 1996

• Generation/Transmission Power System Reliability 
Evaluation by Monte-Carlo Simulation Assuming a 
Fuzzy Load Description, J. Tome Saraiva, V. Miranda, 
L. M. V. G. Pinto, IEEE Transactions on Power 
Systems, Vol. 11, no. 2, May 1996, pp. 690–695

• Component Criticality Importance Measures for the 
Power Industry, Espiritu, J., Coit, D., Prakash, U., 

Electric Power Systems Research, Vol. 77, 2007   

• Composite Reliability Evaluation of Interconnected 
Power Systems, M. A. H. El-Sayed, H. J. Hinz, Electric 
Machines and Power Systems, Vol. 24, no. 6, 1996, pp. 
609–622.

• Reliability Evaluation of Distribution Systems With 
Non-Exponential Down Times, S. Asgarpoor, M. J. 
Mathine, IEEE Transactions on Power Systems, Vol. 
12, no. 2, May 1997, pp. 579–584

Power System Planning & Trade-off Studies are 
Narrowly Focused
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Reliability

Expansion

Operation

• Optimal environmental dispatching of electric 
power systems via an improved Hopfield neural 
network model, King, T.D., El-Hawary, M.E., and 
El-Hawary, F., IEEE Transactions on Power 
Systems, Vol. 10, 1995

• Contract networks for electric power transmission , 
Hogan, W., Journal of Economics, Vol.4, 1992

• An application of Lagrangian Relaxation to 
Sceduling in Power Generation Systems, Muckstadt, 
J.A., Koeing, S.A., Operations Research, Vol.25, 
1977

• Short-term generation scheduling with 
transmission and environmental constraints using an 
augmented Lagrangian relaxation, Wang, S.J., 
Shahidehpour, S.M., Kirschen, D.S., Mokhtari, s., 
Irisarri, G.D., IEEE Transactions on Power System, 
Vol.10, 1995  

• Optimal short-term scheduling of large-scale 
power systems, Bertsekas, D., Lauer, G., Sandell, 
N., Posbergh, T., IEEE Transactions on Automatic 
Constrol, Vol.28, 1983 

Power System Planning & Trade-off Studies are 
Narrowly Focused
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Reliability

Expansion

Operation

• Reliability and costs optimization for distribution 
Networks expansion using an evolutionary Algorithm, 
Ignacio J. Ramírez-Rosado, and José L. Bernal-Agustín, 
IEEE Transactions on Power Systems, Vol. 16, 2001

• A model for Multiperiod Multiobjective Power 
Generation Expansion Problem, Meza, J.L.C., Yildirim, 
M.B., Masud, A.S.M, IEEE Transactions on Power
Systems, Vol.22, 2007

• Power System Expansion Planning under Uncertainty, 
Gorenstin, B.G., Campodonico, N.M., Costa, J.P., 
Pereira, M.V.F., IEEE Transactions on Power Systems, 
Vol.8, 1993

•A multiobjective Evolutionary Programming Algorithm 
and its Applications to Power Generation Expansion 
Planning, Meza, J.L.C., Yildirim, M.B., Masud, A.S.M, 
IEEE Transactions on Power Systems

• Transmission Expansion Planning: A mixed-Integer 
LP Approach, Alguacil, N., Motto, A.L., Conejo, A.J., 
IEEE Transactions on Power Systems, Vol. 18, 2003

Power System Planning & Trade-off Studies are 
Narrowly Focused
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Reliability

Expansion

Operation

Our work integrates 
these dimensions 
simultaneously   

Power System Planning & Trade-off Studies are 
Narrowly Focused
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OUR APPROACH

• Integrated reliability/ 
expansion/operations analysis
– Considering long term planning horizon
– Creating scenarios by Monte Carlo 

Simulation
• Multi-objective models

– min Cost 
– min Greenhouse Gas Emissions (min CO2)
– min Other Emissions (min SO2, min NOX)
– Compromise between them

• Stochastic optimization approach
– Optimization based on power system 

component availability and reliability
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Centralized vs. Distributed

PG1 PG9PG5

T1 T5 T9

273 Local Load Blocks

D1 D2 D272 D273

Natural Gas Storage Areas

PG2 PG3

T2 T3

D1 D7

Natural Gas Storage Areas

City Gate
1

1

D8 D14

2

D15 D21

3

D267 D273

3

City Gate
13

Centralized Distributed
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Technology Choices for 
Distributed Power Generation 

• Small wind power systems

• Photovoltaic cells - uses solar cells to convert 
light into electricity

• Fuel cells - electrochemical energy conversion 
device

• Turbines - extracts energy from a flow of hot gas 
produced by combustion of gas or fuel oil in a stream 
of compressed air 

• Internal combustion engines
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Centralized Test System Topology

PG1 PG10PG5

Transmission Line 1 T5 T10

273 Local Load Blocks

Distribution Line 1 D2 D272 D273

• Our preliminary model has been successfully applied
• Test system is an adopted version of an IEEE standard test system 
• System is presented in “Incorporating stress in electric power systems 
reliability models”, Zerriffi, H., Dowlatabadi, H., Farrel, Alex, Energy 
Policy, Vol, 35, 2007
• Test system has 10 power groups and 273 local load blocks
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Power Groups in Centralized System

PG1

Oil Turbine, 20MW

Gas Turbine, 20MW

Gas Turbine, 76MW

Coal, 76MW

PG10

Coal, 155MW

Coal, 155MW

Coal, 350MW

PG7 Nuclear, 400MW

Each works independent 
from each other
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Failures Consider in 
Centralized Test System

PG1 PG9PG5

T1 T5 T9

273 Local Load Blocks

D1 D2 D272 D273

Natural Gas Storage Areas

PG2 PG3

T2 T3

Gas Transmission
Pipelines
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PG1 PG9PG5

T1 T5 T9

273 Local Load Blocks

D1 D2 D272 D273

Natural Gas Storage Areas

PG2 PG3

T2 T3

Gas Transmission
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Failures Consider in 
Centralized Test System

PG1 PG9PG5

T1 T5 T9

273 Local Load Blocks

D1 D2 D272 D273

Natural Gas Storage Areas

PG2 PG3

T2 T3

Gas Transmission
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Failures Consider in 
Centralized Test System

PG1 PG9PG5

T1 T5 T9

273 Local Load Blocks

D1 D2 D272 D273

Natural Gas Storage Areas

PG2 PG3

T2 T3

Gas Transmission
Pipelines

Electricity 
produced 

cannot be used 
to serve 
demand
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Failures Consider in 
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Failures Considered in
Distributed Test System

D1 D7

Natural Gas Storage Areas

City Gate
1

1

D8 D14

2

D15 D21

3

D253 D259 D260 D266 D267 D273

Sub-transmission mains

City Gate
13

1 2 3

Gas Transmission Pipelines

Sub Transmission Pipelines



REI Third Annual Research Symposium, 2008 24

Failures Considered in
Distributed Test System

D1 D7

Natural Gas Storage Areas

City Gate
1

1

D8 D14

2

D15 D21

3

Distributed 
generation units at 
21 corresponding 

load blocks cannot 
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Failures Considered in
Distributed Test System

D1 D7

Natural Gas Storage Areas

City Gate
1

1

D8 D14

2

D15 D21

3

Demand at 
corresponding load 
block can only be 
satisfied by local 

generation 
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Monte Carlo Simulation is used 
to generate N (10,000) Scenarios

PG1 PG9PG5

T1 T5 T9

273 Local Load Blocks

D1 D2 D272 D273

Natural Gas Storage Areas

PG2 PG3

T2 T3
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• Objective Function:
– minimize cost (generation, expansion, 

unmet demand)
– minimize NOx

– minimize CO2 / SO2

– compromise or composite objective

• Decision Variables
– Generation: what units to use & when
– Expansion: when & where to expand 

using what technology

• Problem constraints:
– network topology
– demand for power
– power generation capacity
– expansion locations

Optimization Model
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• Objective Function:
– minimize cost (generation, expansion, 

unmet demand)
– minimize NOx

– minimize CO2 / SO2

– compromise or composite objective

Optimization Model

• Problem constraints:
– network topology
– demand for power
– power generation capacity
– expansion locations

• Decision Variables
– Generation: what units to use & when
– Expansion: when & where to expand 

using what technology
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• Problem constraints:
– network topology
– demand for power
– power generation capacity
– expansion locations
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• Decision Variables
– Generation: what units to use & when
– Expansion: when & where to expand 

using what technology

Optimization Model

• Objective Function:
– minimize cost (generation, expansion, 

unmet demand)
– minimize NOx

– minimize CO2 / SO2

– compromise or composite objective

• Problem constraints:
– network topology
– demand for power
– power generation capacity
– expansion locations
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We are Developing Multi-objective Stochastic Models

• Linear Programming
– Single objective: minimize cost
– Deterministic assumptions – generation units & transmission are always 

available or some multiple is available
• Stochastic programming

– Uncertainty is explicitly considered
– Two levels of decision variables:

• variables in response to uncertainty (operations)
• variables considering the distribution of uncertainty (expansion)

• Multiple-objective optimization
– Simultaneously consider:
– minimize cost (generation, expansion, unmet demand)
– Minimize emissions (CO2, SO2, NOx) 

• A realistic & useful model must combine these approaches
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Different Levels of Problem Complexity   

• Model 0 
– Centralized system, no expansion considered, one period

• Model 1
– Distributed system, no expansion considered, one period

• Model 2
– Centralized system with distributed generation unit investment choices, 

one period
• Model 3

– Centralized system with expansion decision over n period
• Complexity

– Up to 1,000,000 decision variables and constraints
– GAMS-CPLEX on  Workstation  
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Model 0: Notation

xik: The amount (MW) of electricity produced by generation unit 
k to satisfy demand of ith scenario

ck: The cost of producing electricity ($/MW) by generation unit k

IEi: The amount (MW) of unmet electricity  due to the 
insufficient electricity supply in scenario i

NSDi: The amount (MW) of unmet electricity due to the failure 
of distribution lines in scenario i

f: The cost of unmet demand ($/MW) 

Di: Servable demand (MW) in scenario I

Capik: Available capacity of generation unit k in scenario i
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Model 0
Centralized System, min Cost
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Model 0
Centralized System, min Cost
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Model 0
Centralized System, min Cost
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Model 0
Centralized System, min Cost
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Model 1: Notation
Gil: The amount (MW) of electricity produced by distributed generation unit l

to satisfy servable demand of ith scenario
Lil: The amount (MW) of electricity produced by distributed generation unit l

to satisfy local demand of ith scenario
dl : The cost of producing electricity ($/MW) by distributed generation unit l
IEi: The amount (MW) of unmet servable electricity  due to the insufficient 

electricity supply in scenario i
LIEil: The amount (MW) of unmet local electricity due to the insufficient 

electricity supply in scenario i
f: The cost of unmet demand ($/MW) 
Di: Servable demand (MW) in scenario i
LDil: Local demand (MW) in scenario i at load block l
CapDWil: Available capacity of generation unit l in scenario i where 

distribution line is working
CapDFil: Available capacity of generation unit l in scenario i where 

distribution line is failed
p: Percentage of steam used; r: revenue obtained from steam ($/MW)
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Model 1
Distributed System: min Cost
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Model 1
Distributed System: min Cost
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Cost Trade-off  between Centralized vs. 
Distributed System

Centralized Test 
System

Distributed 
Test System

Electricity 
Generation Cost

$ 67,000,000 $ 438,000,000

Demand Not 
Satisfied 

141,00 MW 23MW

Cost of Unsatisfied 
Demand 

$ 1,416,000,000 $230,000

Steam Revenue 0 130,000,000

Operation Cost $ 1,483,000,000 $ 308,000,000
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Cost Trade-off  between Centralized vs. 
Distributed System

Centralized Test 
System

Distributed 
Test System

Electricity 
Generation Cost

$ 67,000,000 $ 438,000,000

Demand Not 
Satisfied 

141,00 MW 23MW

Cost of Unsatisfied 
Demand 

$ 1,416,000,000 $230,000

Steam Revenue 0 130,000,000

Operation Cost $ 1,483,000,000 $ 308,000,000

Only 100 MW due to 
insufficient energy supply



REI Third Annual Research Symposium, 2008 45

Cost Trade-off  between Centralized vs. 
Distributed System

Centralized Test 
System

Distributed 
Test System

Electricity 
Generation Cost

$ 67,000,000 $ 438,000,000

Demand Not 
Satisfied 

141,00 MW 23MW

Cost of Unsatisfied 
Demand 

$ 1,416,000,000 $230,000

Steam Revenue 0 130,000,000

Operation Cost $ 1,483,000,000 $ 308,000,000

Moving from 
centralized to 

distributed can provide 
cost benefit
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Optimization Considers Different Objectives
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Optimum Solution with each objective function 
in centralized system

Objective 
Function min cost min CO2 min SO2 min NOX

Generation 
Cost ($) 67,000,000 117,000,000 117,000,000 115,000,000

CO2 (Lbs) 13,373,000,000 9,501,000,000 9,501,000,000 9,828,000,000

SO2 (Lbs) 92,000,000 27,000,000 27,000,000 33,000,000

NOX (Lbs) 25,000,000 23,000,000 23,000,000 12,000,000
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Trade-off Analyses for Centralized System 

COST

CO2/SO2

COST

NOX

NOX

CO2/SO2
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Trade-off Analysis with Three Objectives 

COST

CO2
NOX
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Model 3: Notation
xtik: The amount (MW) of electricity produced by generation unit l to satisfy 

servable demand of ith scenario in period t
ytiq: The amount (MW) of electricity produced by new generation unit q to 

satisfy servable demand of ith scenario in period t
Gtil: The amount (MW) of electricity produced by distributed generation unit l

to satisfy servable demand of ith scenario in period t
Ltil: The amount (MW) of electricity produced by distributed generation unit l

to satisfy local demand of ith scenario in period t
IEti: The amount (MW) of unmet servable electricity  due to the insufficient 

electricity supply in scenario i in period t
LIEtil: The amount (MW) of unmet local electricity due to the insufficient 

electricity supply in scenario i in period t
utq: 1 if central generation unit q is built in period t, 0 otherwise
wtl: 1 if distributed generation unit l is built in period t, 0 otherwise
Dti: Servable demand for scenario i in period t
LDtil: Servable demand for scenario i at load block l in period t
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Model 3: Notation

Captik: Available capacity of generation unit k in scenario i in period t
CapNtiq: Available capacity of new central unit q in scenario i in period t
CapDWtil: Available capacity of generation unit l in scenario i in period t 

where distribution line is working
CapDFtil: Available capacity of generation unit l in scenario i in period t where 

distribution line is failed
ctk: The cost of producing electricity by central unit k in period t
etq: The cost of producing electricity by new central unit q in period t
dtl: The cost of producing electricity by distributed unit l in period t
atq: The cost of building central unit q in period t
btl: The cost of building distributed unit l in period t
ft: The cost of unmet demand in period t
pt: The percentage of steam used  in period t
rt: The revenue obtained from steam in period t
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Model 3
Centralized System with Expansion Possibilities over n

Time Periods
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Model 2: Notation

xik: The amount (MW) of electricity produced by generation unit l to satisfy 
servable demand of ith scenario

Gil: The amount (MW) of electricity produced by distributed generation unit l
to satisfy servable demand of ith scenario 

Lil: The amount (MW) of electricity produced by distributed generation unit l
to satisfy local demand of ith scenario 

IEi: The amount (MW) of unmet servable electricity  due to the insufficient 
electricity supply in scenario i 

LIEil: The amount (MW) of unmet local electricity due to the insufficient 
electricity supply in scenario i 

wl: 1 if distributed generation unit l is built, 0 otherwise

Di: Servable demand for scenario i

LDil: Servable demand for scenario i at load block l 
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Model 2: Notation

Capik: Available capacity of generation unit k in scenario i 

CapDWil: Available capacity of generation unit l in scenario i where 
distribution line is working

CapDFil: Available capacity of generation unit l in scenario i where 
distribution line is failed

ck: The cost of producing electricity by central unit k 

dl: The cost of producing electricity by distributed unit l 

bl: The cost of building distributed unit l

f: The cost of unmet demand

p: The percentage of steam used

r: The revenue obtained from steam
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Model 2
Centralized with distributed generation expansion
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Model 2
Centralized with distributed generation expansion

iIEliLIELGkix
lw

liwCapDFL
liwCapDWG

kiCapx
liLDLLIE

iDGxIE

st

prLGfLIEfIE

bwdLGcx

iilililik

l

lilli

lilil

ikik

liilil

l

l
iil

K

k
iki

i

l

l
lili

i

l

l
li

i
i

l

l
ll

i

l

l
lilli

i

K

k
kik

∀≥∀≥∀≥
∀∈

∀≤
∀≤

∀≤

∀≥+

∀≥++

+−+

++++

∑∑

∑ ∑∑ ∑∑

∑∑ ∑∑ ∑

==

= == ==

== == =

0,0,,,0
)1,0{

,
,

,
,

.

)(

)(min

,

,

max,

11

000,10

1

max,

1
,,

000,10

1

max,

1
,

000,10

1

max,

1

000,10

1

max,

1
,

000,10

1 1

min CO2,SO2, NOX or combination of them 
can  easily be modeled. Renewable energy 

sources can benefit for this objectives.
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Centralized with Distributed Generation vs. 
Distributed System Total Cost

Centralized Test 
System

Centralized with 
Expansion by 

Distributed Units
Electricity 

Generation Cost
$ 67,000,000 $69,000,000

Demand Not 
Satisfied 

141,000 MW 115,000 MW

Cost of Unsatisfied 
Demand 

$ 1,416,000,000 $1,159,000,000

Steam Revenue $1,000,000

Building Cost $75,000,000

Building cost $ 1,483,000,000 $ 1,302,000,000
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Centralized with Distributed Generation vs. 
Distributed System Total Cost

Centralized Test 
System

Centralized with 
Expansion by 

Distributed Units
Electricity 

Generation Cost
$ 67,000,000 $69,000,000

Demand Not 
Satisfied 

141,000 MW 115,000 MW

Cost of Unsatisfied 
Demand 

$ 1,416,000,000 $1,159,000,000

Steam Revenue $1,000,000

Building Cost $75,000,000

Building cost $ 1,483,000,000 $ 1,302,000,000

Due to distribution line 
failure 
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Centralized with Distributed Generation vs. 
Distributed System Total Cost

Centralized Test 
System

Centralized with 
Expansion by 

Distributed Units
Electricity 

Generation Cost
$ 67,000,000 $69,000,000

Demand Not 
Satisfied 

141,000 MW 115,000 MW

Cost of Unsatisfied 
Demand 

$ 1,416,000,000 $1,159,000,000

Steam Revenue $1,000,000

Building Cost $75,000,000

Building cost $ 1,483,000,000 $ 1,302,000,000

Expansion with 
distributed generation 

units benefits


