REI Project: Future Electric Power System in a Carbon Constrained World

Distributed vs. Centralized Planning and Trade-off Analyses for Electric Power Systems in a Carbon Constrained World

> David Coit, Frank Felder, Hatice Tekiner Rutgers, The State University of New Jersey

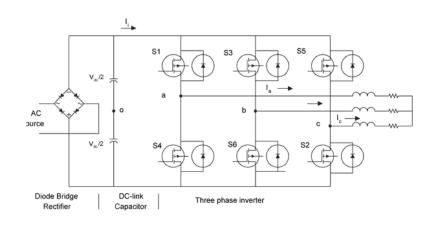
REI Third Annual Research Symposium, April 21, 2008

Study Problem Statement

- Demand for electricity is systematically increasing for an aging system of transmission line, stations, sub-stations, etc.
- Power system network expansion and utility operations must evolve to reduce greenhouse gas emissions
- Trade-offs between cost, reliability and emissions (CO₂, SO₂, NO_x) must be explicitly considered as part of any expansion plan
- Distributed power generation can offer distinct benefits
- Analytical planning and optimization tools are required for modeling and planning our contribution!

Project Team

Center for Energy, Economic & Environmental Policy (CEEEP) Bloustein School of Planning & Public Policy Rutgers University Participants: Frank Felder, Andrew Cottrell


Industrial & Systems Engineering School of Engineering Rutgers University Participants: David Coit, Hatice Tekiner

We acknowledge the support of the Rutgers Energy Institute

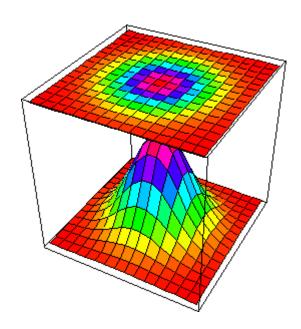
- Reliability
 - Determination of unmet demand, loss of load probability, standard metrics (CAIDI, SAIFI)
 - Tools: historical data, simulation, stochastic models
- Expansion
 - Determination of plans:
 - where to add power generation & transmission capacity
 - what technology (coal, solar, wind, etc.)
 - time horizon for expansion
 - Tools: engineering economics studies, mathematical programming
- Operations
 - Power generation dispatching in response to demand and availability of generating units & transmission
 - Tools: standard dispatching rules, mathematical programming

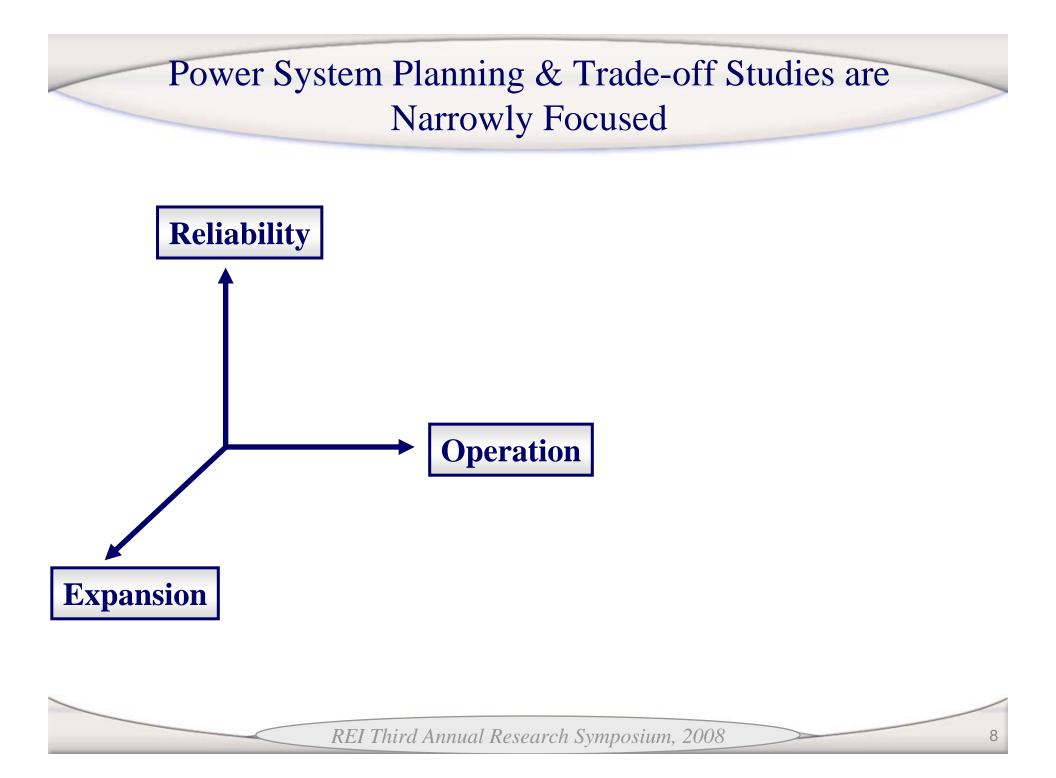
• Reliability

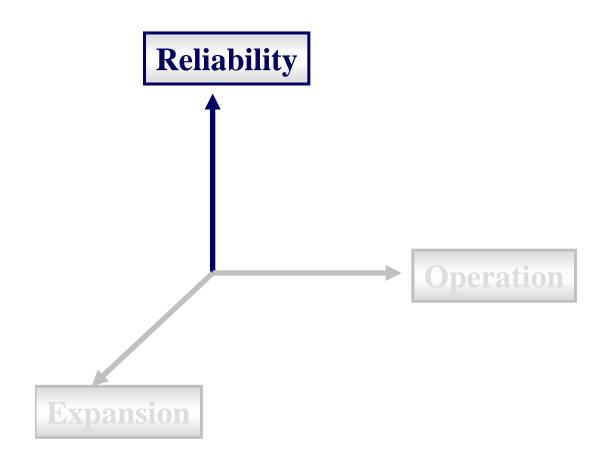
- Determination of unmet demand, loss of load probability, standard metrics (CAIDI, SAIFI)
- Tools: historical data, simulation, stochastic models
- Expansion
 - Determination of plans:
 - where to add power generation & transmission capacity
 - what technology (coal, solar, wind, etc.)
 - time horizon for expansion
 - Tools: engineering economics studies, mathematical programming
- Operations
 - Power generation dispatching in response to demand and availability of generating units & transmission
 - Tools: standard dispatching rules, mathematical programming

• Reliability

- Determination of unmet demand, loss of load probability, standard metrics (CAIDI, SAIFI)
- Tools: historical data, simulation, stochastic models
- Expansion
 - Determination of plans:
 - where to add power generation & transmission capacity
 - what technology (coal, solar, wind, etc.)
- time horizon for expansion
 - Tools: engineering economics studies, mathematical programming


- Operations
- Power generation dispatching in response to demand and availability of generating units & transmission
 - Tools: standard dispatching rules, mathematical programming

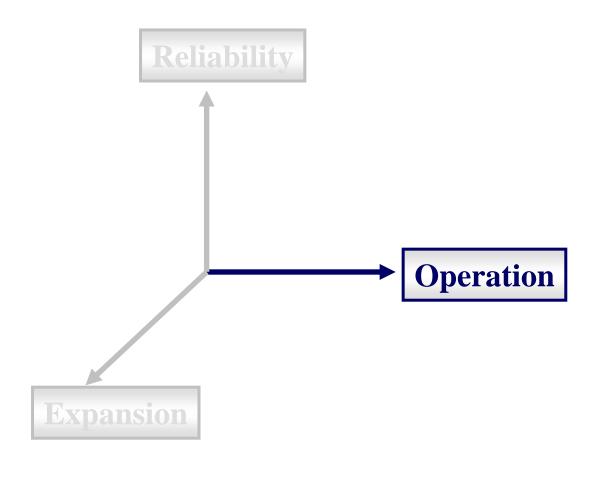

• Reliability


- Determination of unmet demand, loss of load probability, standard metrics (CAIDI, SAIFI)
- Tools: historical data, simulation, stochastic models
- Expansion
 - Determination of plans:
 - where to add power generation & transmission capacity
 - what technology (coal, solar, wind, etc.)
 - time horizon for expansion
 - Tools: engineering economics studies, mathematical programming

• Operations

- Power generation dispatching in response to demand and availability of generating units & transmission
- Tools: standard dispatching rules, mathematical programming

• Power Distribution System Planning with Reliability Modeling and Optimization, Tang, Y., *IEEE Transactions on Power Systems*, Vol.11, 1996

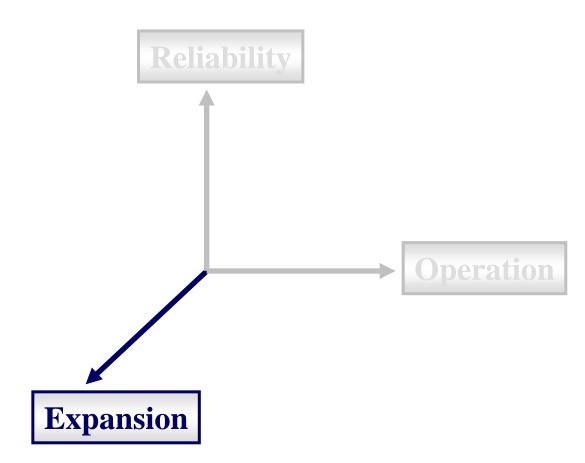

• Generation/Transmission Power System Reliability Evaluation by Monte-Carlo Simulation Assuming a Fuzzy Load Description, J. Tome Saraiva, V. Miranda, L. M. V. G. Pinto, *IEEE Transactions on Power Systems*, Vol. 11, no. 2, May 1996, pp. 690–695

• Component Criticality Importance Measures for the Power Industry, Espiritu, J., Coit, D., Prakash, U.,

Electric Power Systems Research, Vol. 77, 2007

• Composite Reliability Evaluation of Interconnected Power Systems, M. A. H. El-Sayed, H. J. Hinz, *Electric Machines and Power Systems*, Vol. 24, no. 6, 1996, pp. 609–622.

• Reliability Evaluation of Distribution Systems With Non-Exponential Down Times, S. Asgarpoor, M. J. Mathine, *IEEE Transactions on Power Systems*, Vol. 12, no. 2, May 1997, pp. 579–584

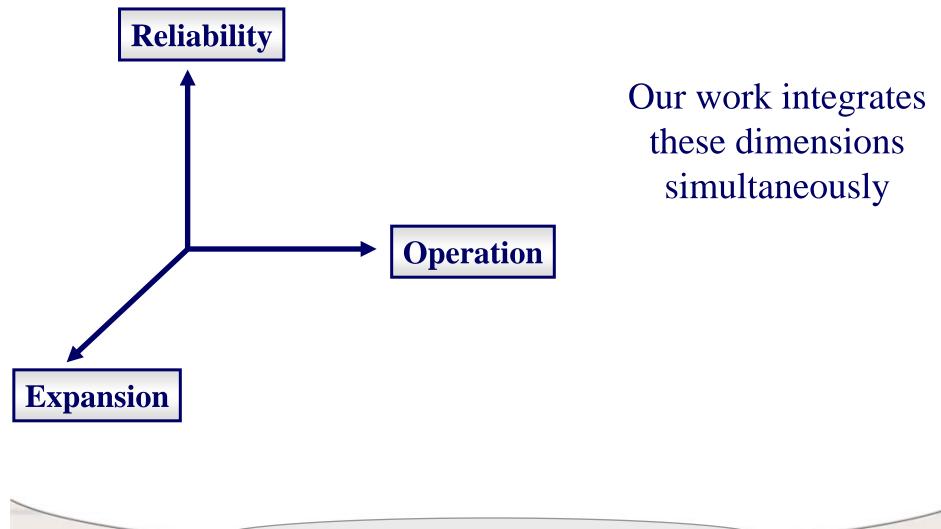

• Optimal environmental dispatching of electric power systems via an improved Hopfield neural network model, King, T.D., El-Hawary, M.E., and El-Hawary, F., *IEEE Transactions on Power Systems*, Vol. 10, 1995

• Contract networks for electric power transmission , Hogan, W., *Journal of Economics*, Vol.4, 1992

• An application of Lagrangian Relaxation to Sceduling in Power Generation Systems, Muckstadt, J.A., Koeing, S.A., *Operations Research*, Vol.25, 1977

• Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation, Wang, S.J., Shahidehpour, S.M., Kirschen, D.S., Mokhtari, s., Irisarri, G.D., *IEEE Transactions on Power System*, Vol.10, 1995

• Optimal short-term scheduling of large-scale power systems, Bertsekas, D., Lauer, G., Sandell, N., Posbergh, T., *IEEE Transactions on Automatic Constrol*, Vol.28, 1983


• Reliability and costs optimization for distribution Networks expansion using an evolutionary Algorithm, Ignacio J. Ramírez-Rosado, *and* José L. Bernal-Agustín, *IEEE Transactions on Power Systems*, Vol. 16, 2001

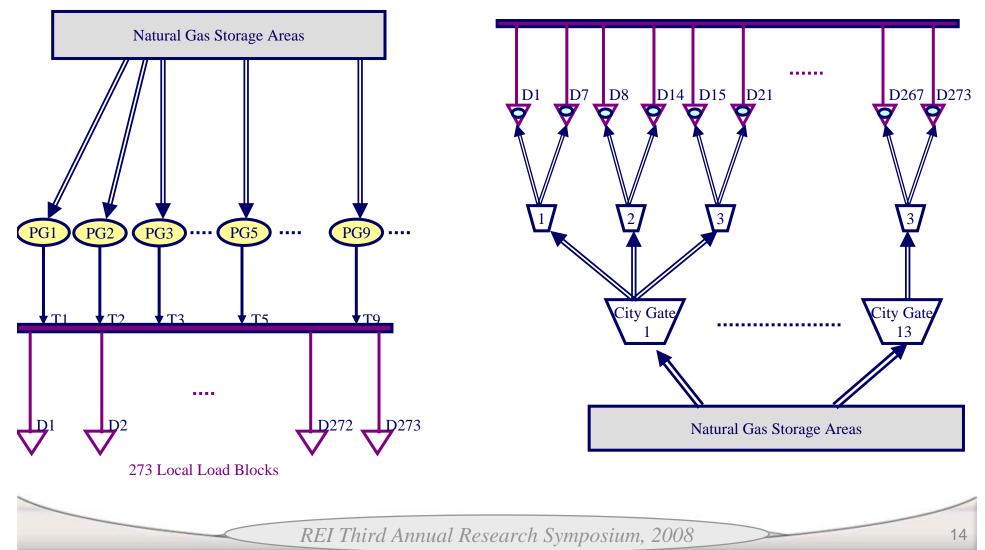
• A model for Multiperiod Multiobjective Power Generation Expansion Problem, Meza, J.L.C., Yildirim, M.B., Masud, A.S.M, *IEEE Transactions on Power* Systems, Vol.22, 2007

• Power System Expansion Planning under Uncertainty, Gorenstin, B.G., Campodonico, N.M., Costa, J.P., Pereira, M.V.F., *IEEE Transactions on Power Systems*, Vol.8, 1993

•A multiobjective Evolutionary Programming Algorithm and its Applications to Power Generation Expansion Planning, Meza, J.L.C., Yildirim, M.B., Masud, A.S.M, *IEEE Transactions on Power Systems*

• Transmission Expansion Planning: A mixed-Integer LP Approach, Alguacil, N., Motto, A.L., Conejo, A.J., *IEEE Transactions on Power Systems*, Vol. 18, 2003

OUR APPROACH


- Integrated reliability/ expansion/operations analysis
 - Considering long term planning horizon
 - Creating scenarios by Monte Carlo Simulation
- Multi-objective models
 - min Cost
 - min Greenhouse Gas Emissions (min CO₂)
 - min Other Emissions (min SO_2 , min NO_X)
 - Compromise between them
- Stochastic optimization approach
 - Optimization based on power system component availability and reliability

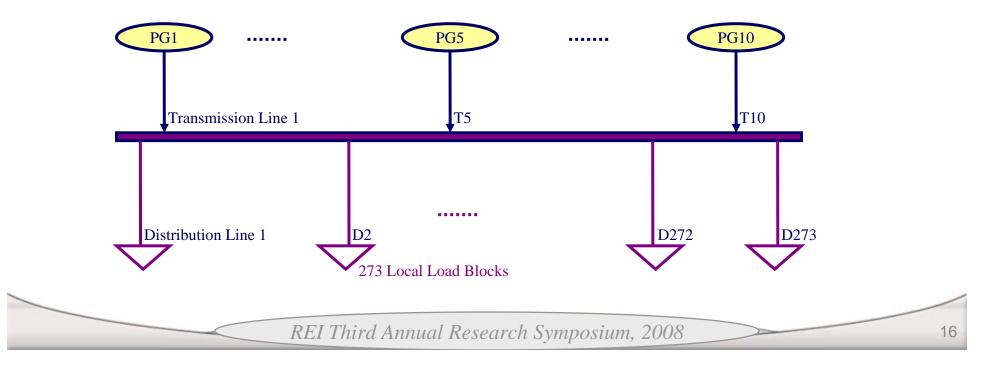
Centralized vs. Distributed

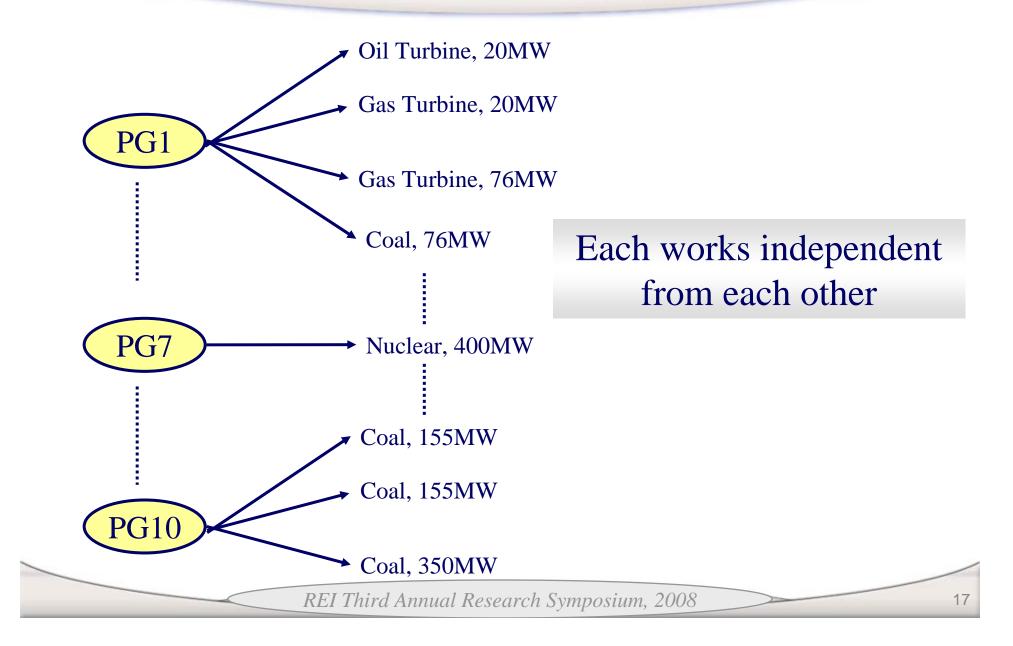
Centralized

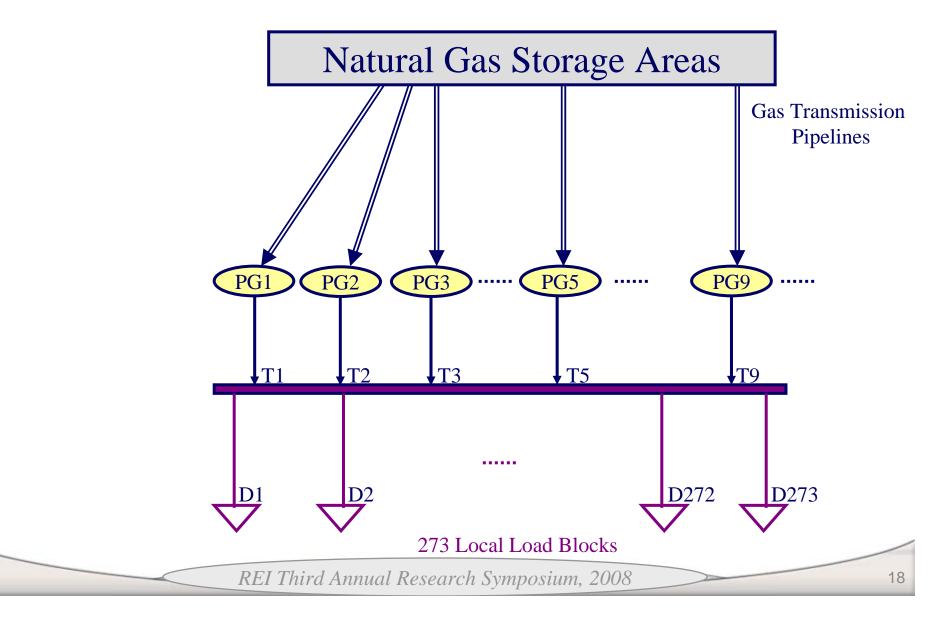
Distributed

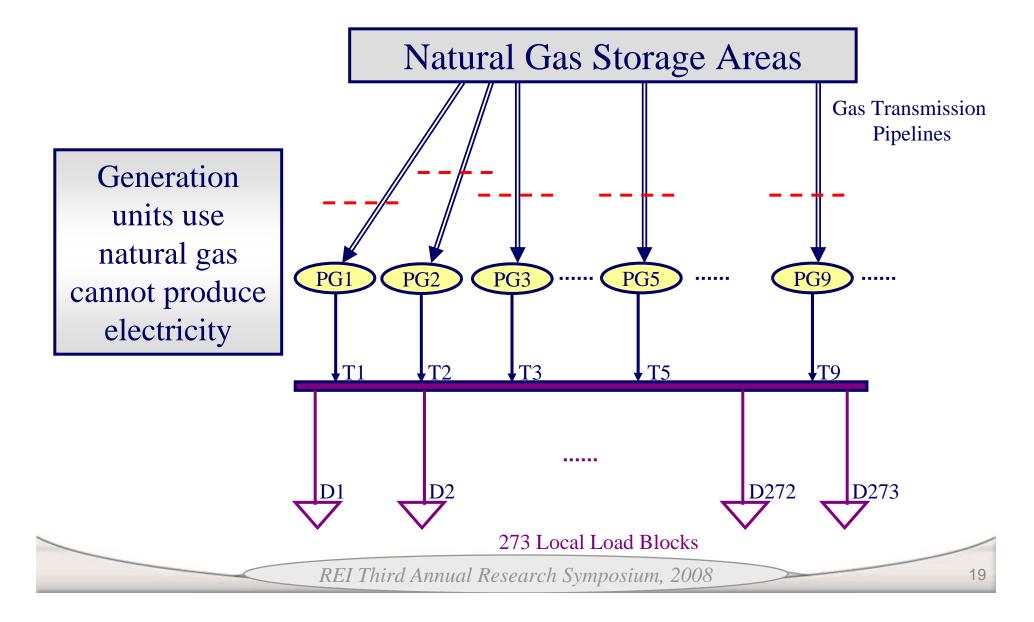
Technology Choices for Distributed Power Generation

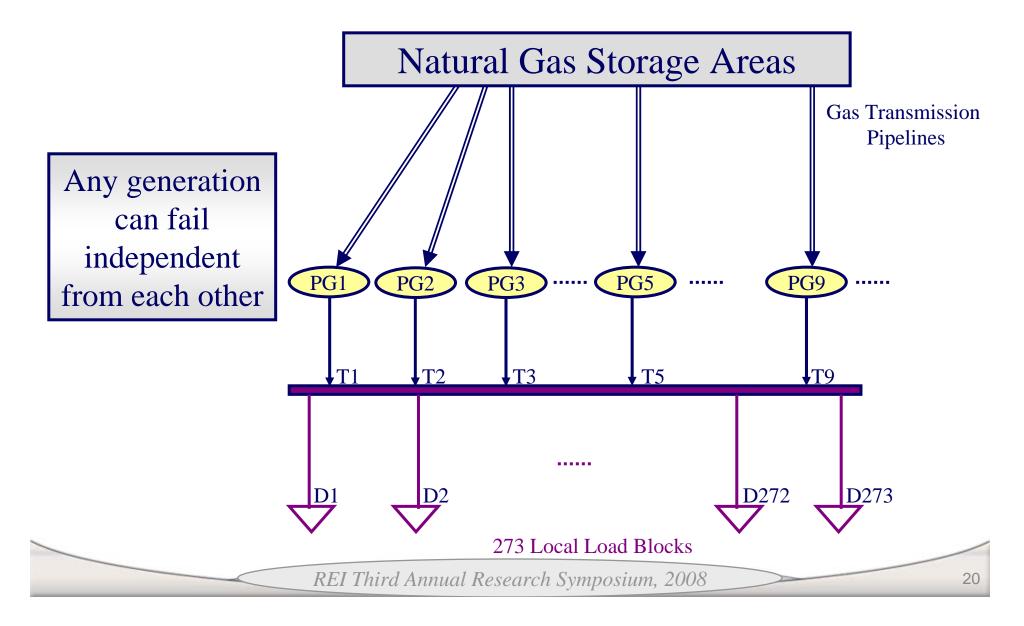
- Small wind power systems
- Photovoltaic cells uses solar cells to convert light into electricity
- Fuel cells electrochemical energy conversion device
- Turbines extracts energy from a flow of hot gas produced by combustion of gas or fuel oil in a stream of compressed air
- Internal combustion engines

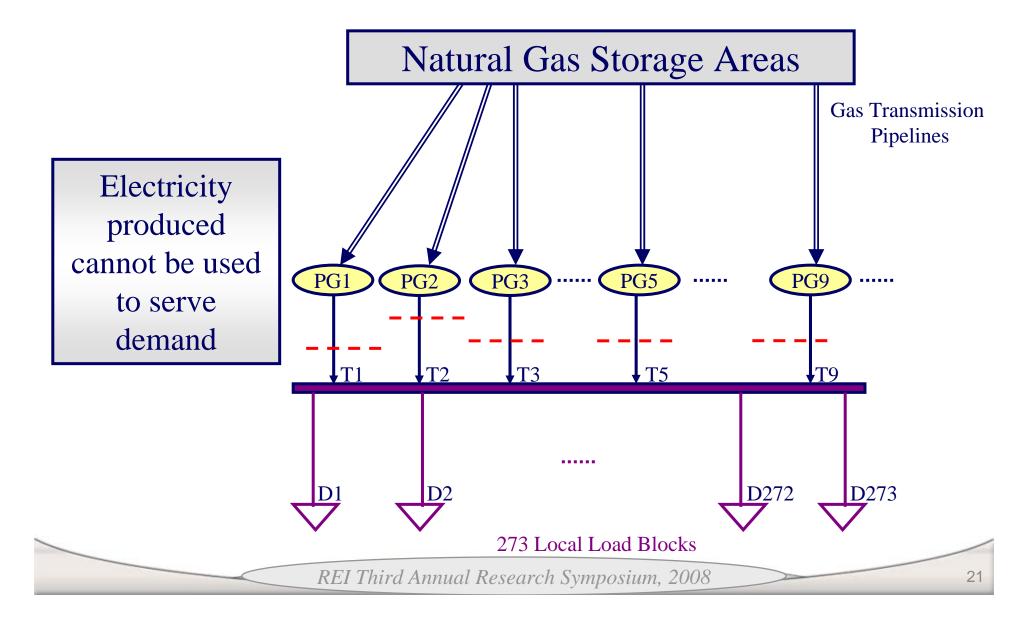


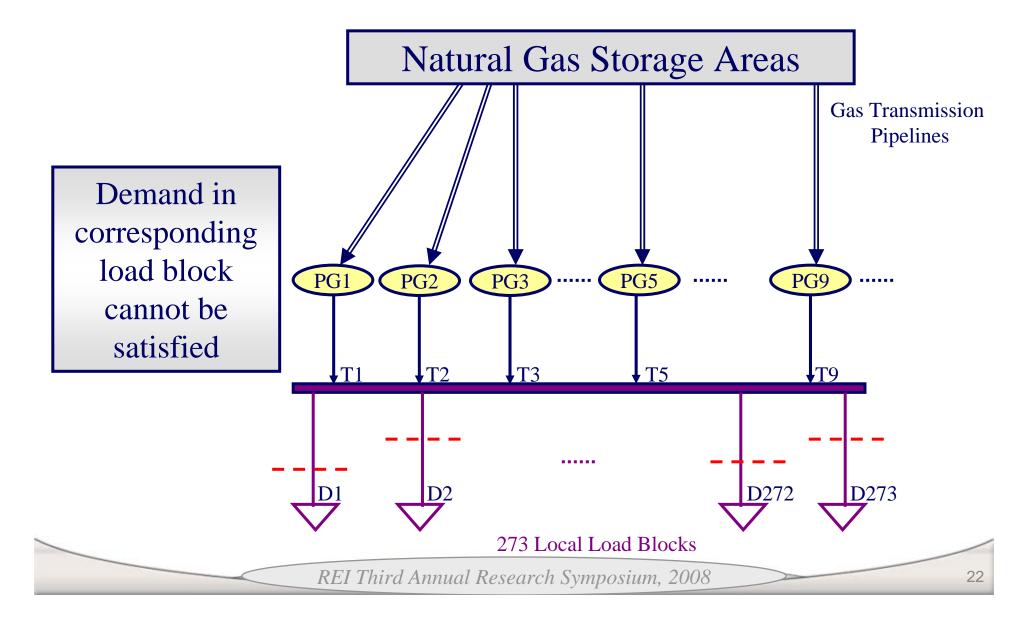


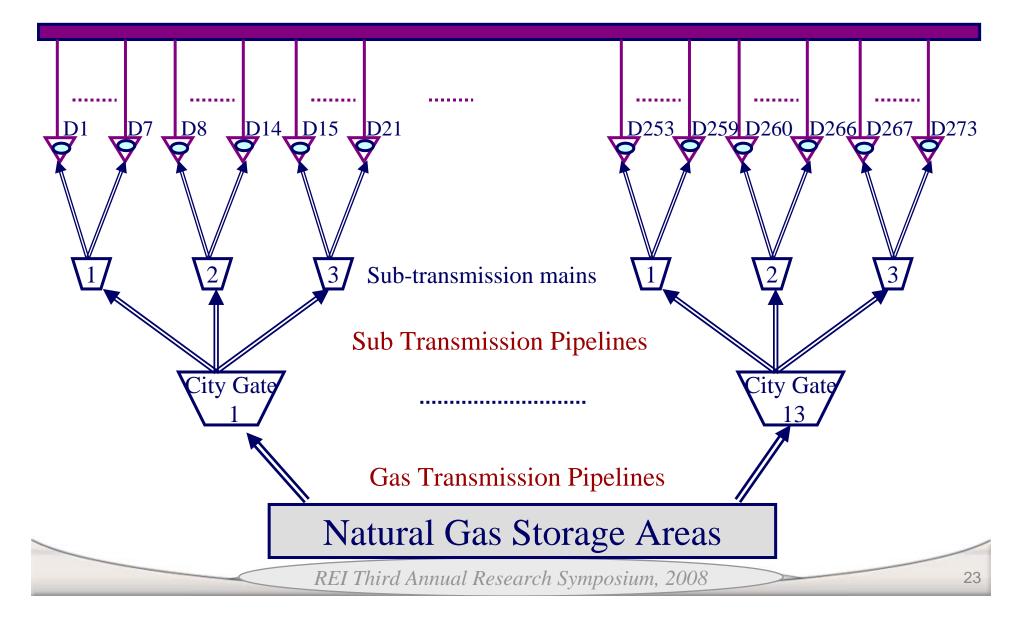

Centralized Test System Topology

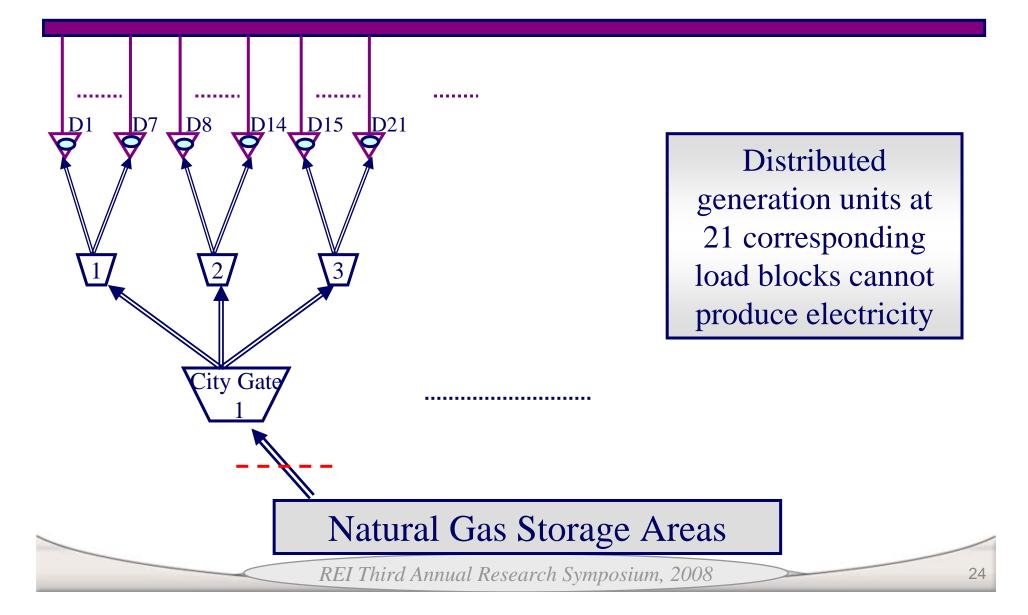

- Our preliminary model has been successfully applied
- Test system is an adopted version of an IEEE standard test system
- System is presented in "Incorporating stress in electric power systems reliability models", Zerriffi, H., Dowlatabadi, H., Farrel, Alex, *Energy Policy*, Vol, 35, 2007
- Test system has 10 power groups and 273 local load blocks

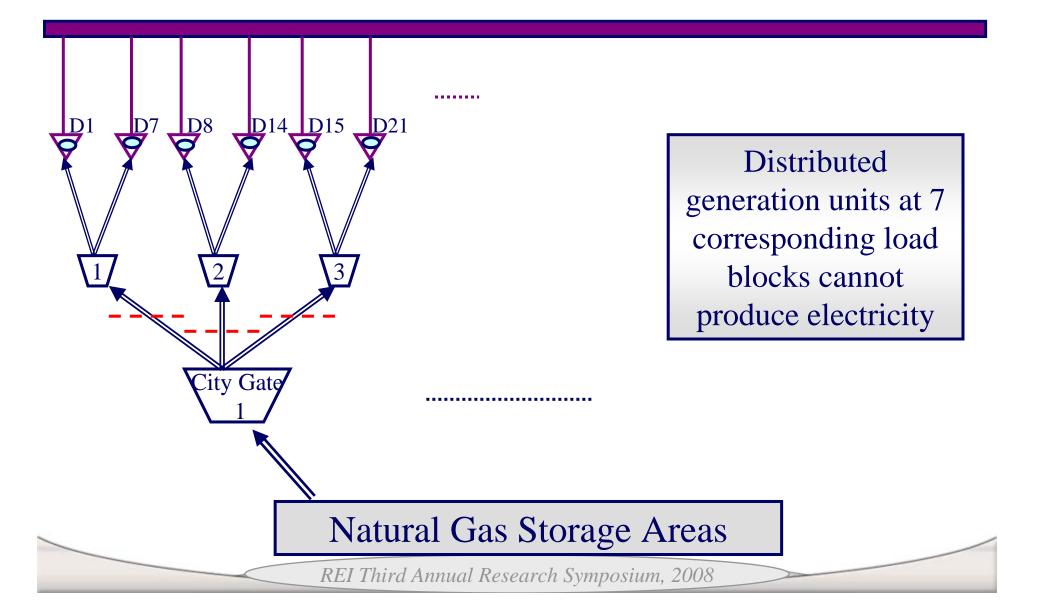


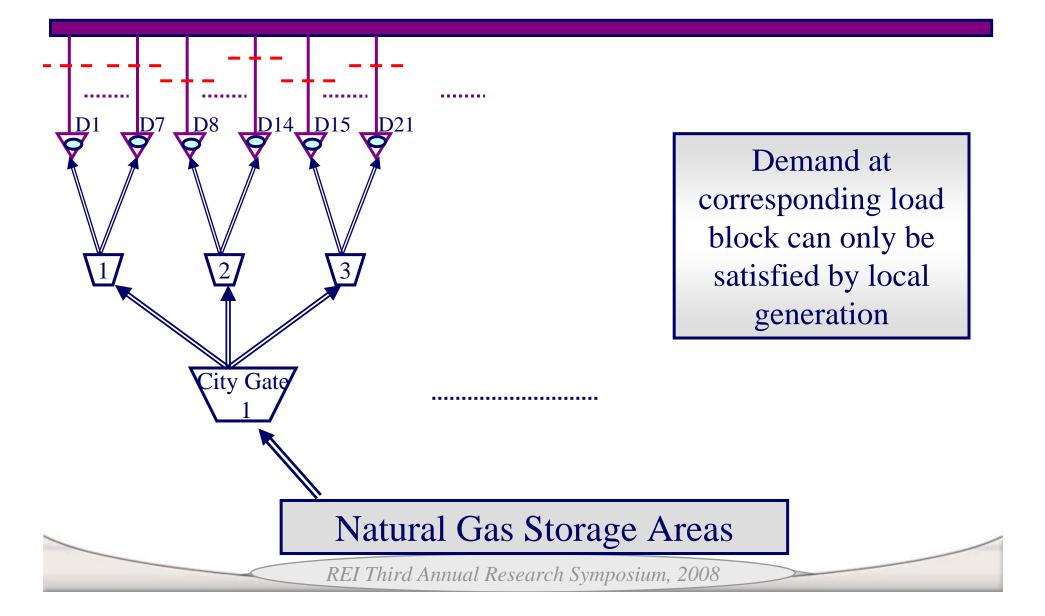

Power Groups in Centralized System

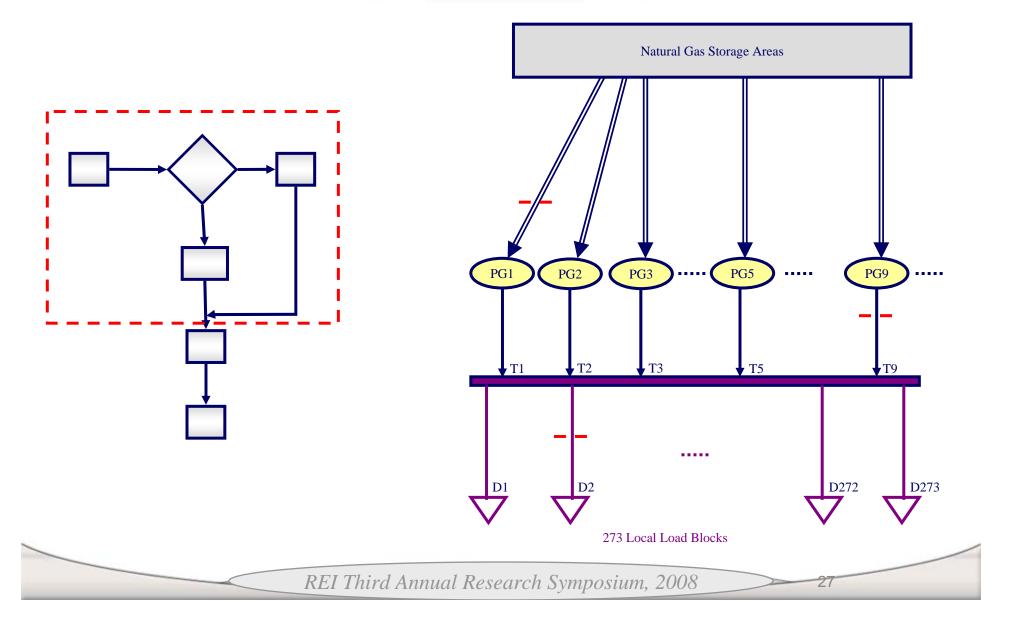


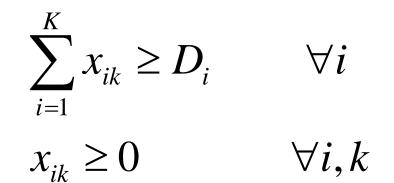




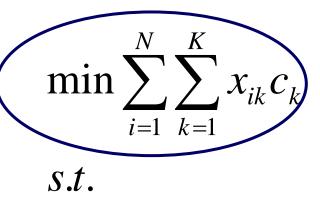







Monte Carlo Simulation is used to generate N (10,000) Scenarios

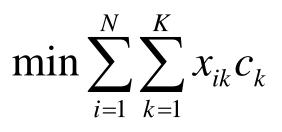
- Objective Function:
 - minimize cost (generation, expansion, unmet demand)
 - minimize NO_x
 - minimize CO_2 / SO_2
 - compromise or composite objective
- Problem constraints:
 - network topology
 - demand for power
 - power generation capacity
 - expansion locations
- Decision Variables
 - Generation: what units to use & when
 - Expansion: when & where to expand using what technology


 $\min\sum_{i=1}^N\sum_{k=1}^K x_{ik}c_k$

s.t.

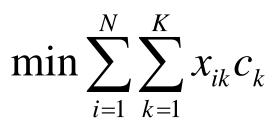
28

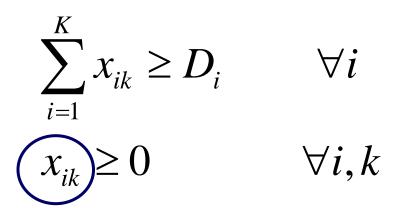
- Objective Function:
 - minimize cost (generation, expansion, unmet demand)
 - minimize NO_x
 - minimize CO_2 / SO_2
 - compromise or composite objective
- Problem constraints:
 - network topology
 - demand for power
 - power generation capacity
 - expansion locations
- Decision Variables
 - Generation: what units to use & when
 - Expansion: when & where to expand using what technology



$$\sum_{i=1}^{K} x_{ik} \ge D_i \qquad \forall i$$

 $x_{ik} \ge 0 \qquad \qquad \forall i,k$


- Objective Function:
 - minimize cost (generation, expansion, unmet demand)
 - minimize NO_x
 - minimize CO_2 / SO_2
 - compromise or composite objective
- Problem constraints:
 - network topology
 - demand for power
 - power generation capacity
 - expansion locations
- Decision Variables
 - Generation: what units to use & when
 - Expansion: when & where to expand using what technology



- Objective Function:
 - minimize cost (generation, expansion, unmet demand)
 - minimize NO_x
 - minimize CO_2 / SO_2
 - compromise or composite objective
- Problem constraints:
 - network topology
 - demand for power
 - power generation capacity
 - expansion locations
- Decision Variables
 - Generation: what units to use & when
 - Expansion: when & where to expand using what technology

s.t.

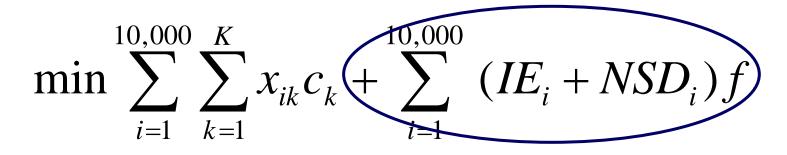
31

We are Developing Multi-objective Stochastic Models

- Linear Programming
 - Single objective: minimize cost
 - Deterministic assumptions generation units & transmission are always available or some multiple is available
- Stochastic programming
 - Uncertainty is explicitly considered
 - Two levels of decision variables:
 - variables in response to uncertainty (operations)
 - variables considering the distribution of uncertainty (expansion)
- Multiple-objective optimization
 - Simultaneously consider:
 - minimize cost (generation, expansion, unmet demand)
 - Minimize emissions (CO_2 , SO_2 , NO_x)
- A realistic & useful model must combine these approaches

Different Levels of Problem Complexity

- Model 0
 - Centralized system, no expansion considered, one period
- Model 1
 - Distributed system, no expansion considered, one period
- Model 2
 - Centralized system with distributed generation unit investment choices, one period
- Model 3
 - Centralized system with expansion decision over *n* period
- Complexity
 - Up to 1,000,000 decision variables and constraints
 - GAMS-CPLEX on Workstation

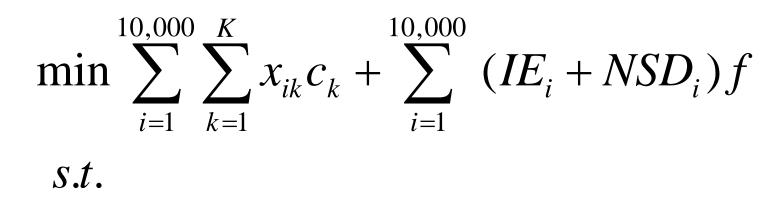

Model 0: Notation

- x_{ik} : The amount (MW) of electricity produced by generation unit k to satisfy demand of i^{th} scenario
- c_k : The cost of producing electricity (\$/MW) by generation unit k
- IE_i : The amount (MW) of unmet electricity due to the insufficient electricity supply in scenario *i*
- NSD_i : The amount (MW) of unmet electricity due to the failure of distribution lines in scenario *i*
- *f*: The cost of unmet demand (\$/MW)
- D_i : Servable demand (MW) in scenario I
- Cap_{ik} : Available capacity of generation unit k in scenario i

Model 0 Centralized System, min Cost

$$\min \sum_{i=1}^{10,000} \sum_{k=1}^{K} x_{ik} c_k + \sum_{i=1}^{10,000} (IE_i + NSD_i) f$$

Model 0 Centralized System, min Cost

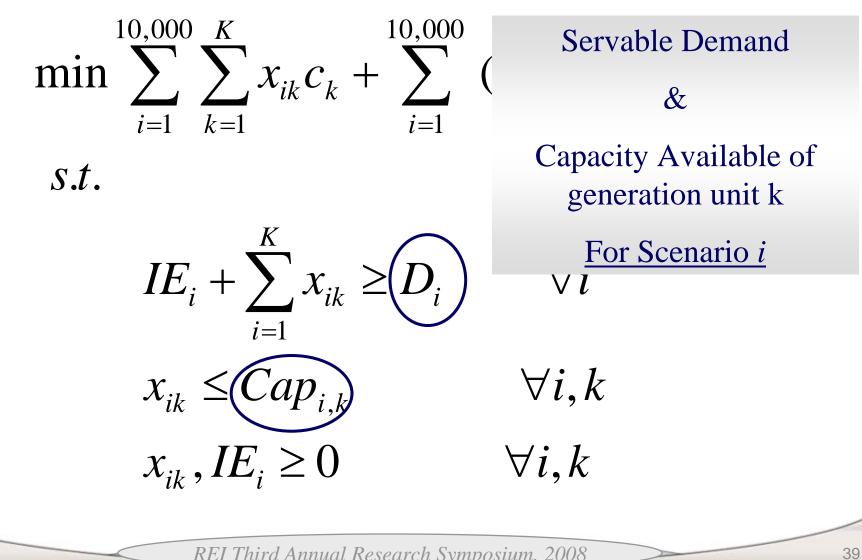


Cost of unmet demand

Model 0 Centralized System, min Cost $\min \sum_{i=1}^{10,000} \sum_{k=1}^{K} x_{ik} c_k + \sum_{i=1}^{10,000} (IE_i + NSD_i) f$

Cost of generation

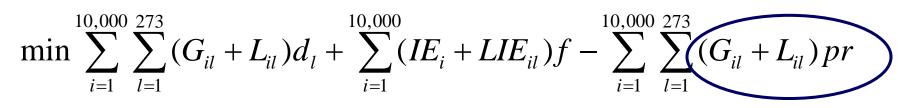
Model 0 Centralized System, min Cost



$$IE_{i} + \sum_{i=1}^{K} x_{ik} \ge D_{i} \qquad \forall i$$
$$x_{ik} \le Cap_{i,k} \qquad \forall i,k$$
$$x_{ik}, IE_{i} \ge 0 \qquad \forall i,k$$

REI Third Annual Research Symposium, 2008

38


Model 0 Centralized System, min Cost

Model 1: Notation

- G_{il} : The amount (MW) of electricity produced by distributed generation unit l to satisfy servable demand of i^{th} scenario
- L_{il} : The amount (MW) of electricity produced by distributed generation unit l to satisfy local demand of i^{th} scenario
- d_l : The cost of producing electricity (\$/MW) by distributed generation unit l
- IE_i : The amount (MW) of unmet servable electricity due to the insufficient electricity supply in scenario i
- LIE_{il} : The amount (MW) of unmet local electricity due to the insufficient electricity supply in scenario i
- *f*: The cost of unmet demand (\$/MW)
- D_i : Servable demand (MW) in scenario *i*
- LD_{il} : Local demand (MW) in scenario *i* at load block *l*
- $CapDW_{il}$: Available capacity of generation unit l in scenario i where distribution line is working
- $CapDF_{il}$: Available capacity of generation unit l in scenario i where distribution line is failed
- *p*: Percentage of steam used; *r*: revenue obtained from steam (\$/MW)

Model 1 Distributed System: min Cost

st.

$$\begin{split} IE_{i} + \sum_{l=1}^{273} G_{il} \geq D_{i} & \forall i \\ LIE_{il} + L_{il} \geq LD_{il} & \forall i, l \\ G_{il} \leq CapDW_{il} & \forall i, l \\ L_{il} \leq CapDF_{il} & \forall i, l \\ G_{il}, L_{il} \geq 0 & \forall i, l \end{split}$$

Profit due to cogeneration capability

Model 1 Distributed System: min Cost

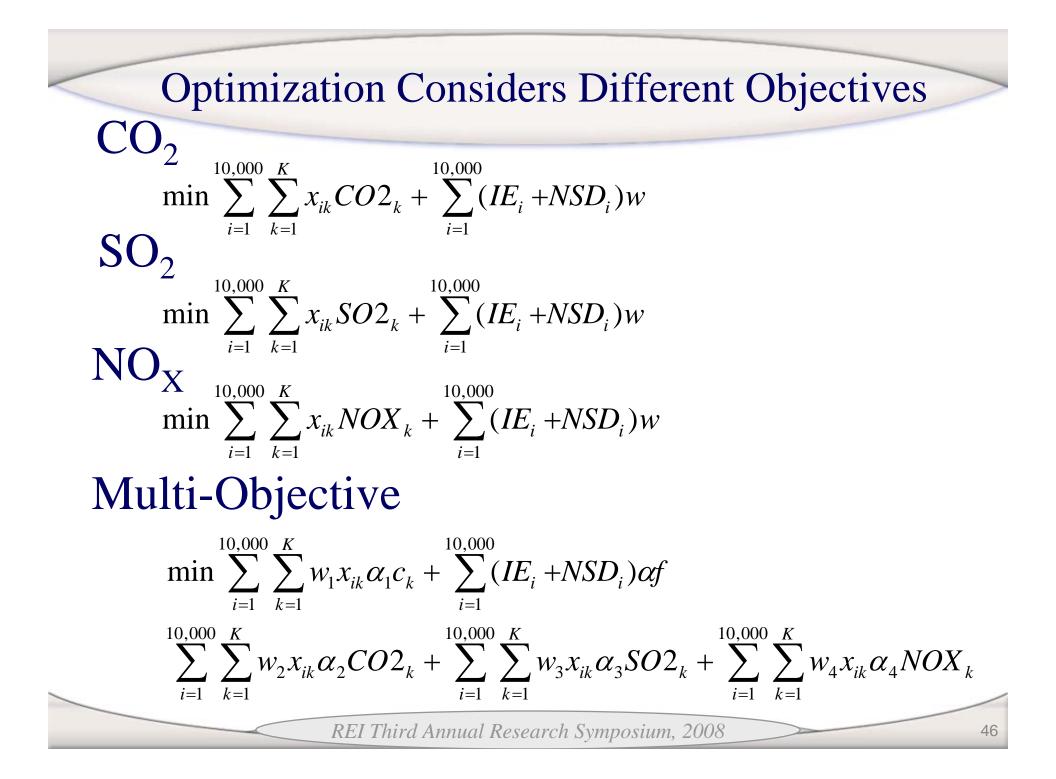
$$\min \sum_{i=1}^{10,000} \sum_{l=1}^{273} (G_{il} + L_{il}) d_l + \sum_{i=1}^{10,000} (IE_i + LIE_{il}) f - \sum_{i=1}^{10,000} \sum_{l=1}^{273} (G_{il} + L_{il}) pr$$

st.

$$\begin{split} IE_{i} + \sum_{l=1}^{273} G_{il} \geq D_{i} & \forall i \\ LIE_{il} + L_{il} \geq LD_{il} & \forall i, l \\ G_{il} \leq CapDW_{il} & \forall i, l \\ L_{il} \leq CapDF_{il} & \forall i, l \\ G_{il}, L_{il} \geq 0 & \forall i, l \end{split}$$

Cost Trade-off between Centralized vs. Distributed System

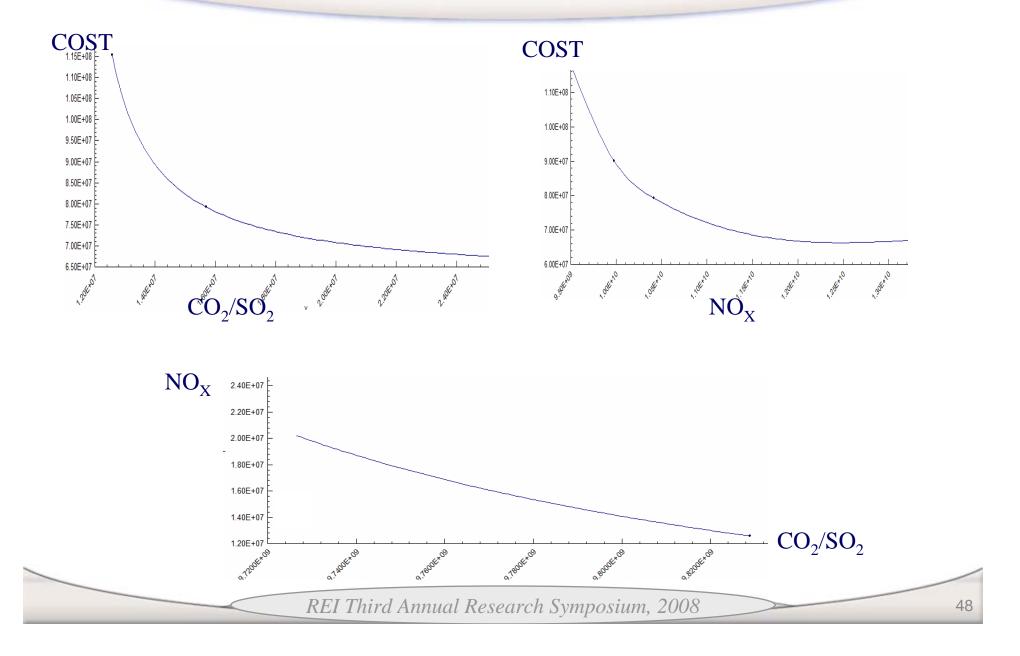
	Centralized Test System	Distributed Test System
Electricity Generation Cost	\$ 67,000,000	\$ 438,000,000
Demand Not Satisfied	141,00 MW	23MW
Cost of Unsatisfied Demand	\$ 1,416,000,000	\$230,000
Steam Revenue	0	130,000,000
Operation Cost	\$ 1,483,000,000	\$ 308,000,000

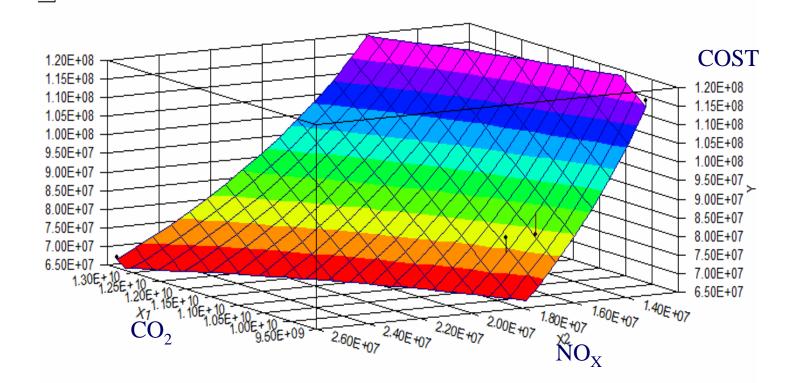

Cost Trade-off between Centralized vs. Distributed System

	Centralized Test System	Distributed Test System
Electricity Generation Cost	\$ 67,000,000	\$ 438,000,000
Demand Not Satisfied	141,00 MW	23MW
Cost of Unsatisfied Demand	\$ 1,416,000,000	\$230,000
Steam Revenue	0	130,000,000
Operation Cost	\$ 1,483,000,000	\$ 308,000,000

Only 100 MW due to insufficient energy supply

Cost Trade-off between Centralized vs. Distributed System


	Centralized Test System	Distributed Test System	
Electricity Generation Cost	\$ 67,000,000	\$ 438,000,000	
Demand Not Satisfied	141,00 MW	23MW	Moving from
Cost of Unsatisfied Demand	\$ 1,416,000,000	\$230,000	centralized to distributed can provide cost benefit
Steam Revenue	0	130,000,000	
Operation Cost (\$ 1,483,000,000	\$ 308,000,000	\triangleright


Optimum Solution with each objective function in centralized system

Objective Function	min cost	min CO ₂	min SO ₂	min NO _X
Generation Cost (\$)	67,000,000	117,000,000	117,000,000	115,000,000
CO ₂ (Lbs)	13,373,000,000	9,501,000,000	9,501,000,000	9,828,000,000
SO ₂ (Lbs)	92,000,000	27,000,000	27,000,000	33,000,000
NO _X (Lbs)	25,000,000	23,000,000	23,000,000	12,000,000

Trade-off Analyses for Centralized System

Trade-off Analysis with Three Objectives

Model 3: Notation

- x_{tik} : The amount (MW) of electricity produced by generation unit *l* to satisfy servable demand of i^{th} scenario in period *t*
- y_{tiq} : The amount (MW) of electricity produced by new generation unit q to satisfy servable demand of i^{th} scenario in period t
- G_{til} : The amount (MW) of electricity produced by distributed generation unit l to satisfy servable demand of i^{th} scenario in period t
- L_{til} : The amount (MW) of electricity produced by distributed generation unit l to satisfy local demand of i^{th} scenario in period t
- IE_{ti} : The amount (MW) of unmet servable electricity due to the insufficient electricity supply in scenario *i* in period *t*
- LIE_{til} : The amount (MW) of unmet local electricity due to the insufficient electricity supply in scenario i in period t
- u_{tq} : 1 if central generation unit q is built in period t, 0 otherwise
- w_{tl} : 1 if distributed generation unit *l* is built in period *t*, 0 otherwise
- D_{ti} : Servable demand for scenario *i* in period *t*
- LD_{til} : Servable demand for scenario *i* at load block *l* in period *t*

Model 3: Notation

 Cap_{tik} : Available capacity of generation unit k in scenario i in period t $CapN_{tiq}$: Available capacity of new central unit q in scenario i in period t $CapDW_{til}$: Available capacity of generation unit l in scenario i in period t where distribution line is working $CapDF_{til}$: Available capacity of generation unit *l* in scenario *i* in period *t* where distribution line is failed c_{tk} : The cost of producing electricity by central unit k in period t e_{tq} : The cost of producing electricity by new central unit q in period t d_{tl} : The cost of producing electricity by distributed unit l in period t a_{ta} : The cost of building central unit q in period t b_{tl} : The cost of building distributed unit l in period t f_t : The cost of unmet demand in period t p_t : The percentage of steam used in period t r_t : The revenue obtained from steam in period t

Model 3 Centralized System with Expansion Possibilities over *n* Time Periods

$$\min \sum_{t=1}^{n} \sum_{i=1}^{10,000} \sum_{k=1}^{K} x_{tik} c_{tk} + \sum_{t=1}^{n} \sum_{i=1}^{10,000} \sum_{q=1}^{Q} y_{tiq} e_{tq} + \sum_{t=1}^{n} \sum_{q=1}^{Q} u_{tq} a_{tq} + \sum_{t=1}^{n} \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} (G_{til} + L_{til}) d_{tl} + \sum_{t=1}^{n} \sum_{l=1}^{\max,l} w_{tl} b_{tl} + \sum_{t=1}^{n} \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} LIE_{til} f_t - \sum_{t=1}^{n} \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} (G_{til} + L_{til}) p_t r_t$$

st.

$$\begin{split} IE_{ti} + \sum_{k=1}^{K} x_{tik} + \sum_{q=1}^{Q} y_{tiq} + \sum_{l=1}^{\max, l} G_{til} \ge D_{ti} \qquad \forall t, i \\ LIE_{til} + L_{til} \ge LD_{til} \qquad \forall t, i, l \\ x_{tik} \le Cap_{tik} \qquad \forall t, i, k \\ y_{tiq} \le CapN_{tiq} \sum_{\tau=1}^{t} u_{\tau q} \qquad \forall t, i, q \end{split}$$

Model 3 Centralized System with Expansion Possibilities over *n* Time Periods

$$\begin{split} G_{iil} &\leq CapDW_{iil} \sum_{\tau=1}^{t} w_{\tau l} \qquad \forall t, i, l \\ L_{iil} &\leq CapDF_{iil} \sum_{\tau=1}^{t} w_{\tau l} \qquad \forall t, i, l \\ \sum_{\tau=1}^{n} w_{\tau l} &= 1 \qquad \forall l \\ \sum_{t=1}^{n} u_{tq} &= 1 \qquad \forall l \\ w_{tl} &\in \{0, 1\} \qquad \forall t, l \qquad u_{tq} \in \{0, 1\} \qquad \forall t, q \\ x_{tik} &\geq 0 \qquad \forall t, i, k \qquad G_{til}, L_{til}, LIE_{til} \geq 0 \qquad \forall t, i, l \qquad IE_{ti} \geq 0 \qquad \forall t, i \end{split}$$

Model 2: Notation

- x_{ik} : The amount (MW) of electricity produced by generation unit *l* to satisfy servable demand of i^{th} scenario
- G_{il} : The amount (MW) of electricity produced by distributed generation unit l to satisfy servable demand of i^{th} scenario
- L_{il} : The amount (MW) of electricity produced by distributed generation unit l to satisfy local demand of i^{th} scenario
- IE_i : The amount (MW) of unmet servable electricity due to the insufficient electricity supply in scenario i
- LIE_{il} : The amount (MW) of unmet local electricity due to the insufficient electricity supply in scenario i
- w_l : 1 if distributed generation unit *l* is built, 0 otherwise
- D_i : Servable demand for scenario i
- LD_{il} : Servable demand for scenario *i* at load block *l*

Model 2: Notation

 Cap_{ik} : Available capacity of generation unit k in scenario i

- $CapDW_{il}$: Available capacity of generation unit l in scenario i where distribution line is working
- $CapDF_{il}$: Available capacity of generation unit l in scenario i where distribution line is failed
- c_k : The cost of producing electricity by central unit k
- d_l : The cost of producing electricity by distributed unit l
- b_l : The cost of building distributed unit l
- f: The cost of unmet demand
- p: The percentage of steam used
- *r*: The revenue obtained from steam

Model 2

Centralized with distributed generation expansion

$$\min \sum_{i=1}^{10,000} \sum_{k=1}^{K} x_{ik} c_k + \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} (G_{il} + L_{il}) d_l + \sum_{l=1}^{\max,l} w_l b_l + \sum_{i=1}^{10,000} IE_i f + \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} LIE_{i,l} f - \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} (G_{il} + L_{il}) pr$$

st.

$$\begin{split} IE_{i} + \sum_{k=1}^{K} x_{ik} + \sum_{l=1}^{\max,l} G_{il} \geq D_{i} \quad \forall i \\ LIE_{il} + L_{il} \geq LD_{il} \quad \forall i,l \\ x_{ik} \leq Cap_{ik} \quad \forall i,k \\ G_{il} \leq CapDW_{il}w_{l} \quad \forall i,l \\ L_{i,l} \leq CapDF_{il}w_{l} \quad \forall i,l \\ w_{l} \in \{0,1\} \quad \forall l \\ x_{ik} \geq 0 \quad \forall i,k \quad G_{il}, L_{il}, LIE_{il} \geq 0 \quad \forall i,l \quad IE_{i} \geq 0 \quad \forall i \end{split}$$

Model 2

Centralized with distributed generation expansion

$$\begin{split} \min \sum_{i=1}^{10,000} \sum_{k=1}^{K} x_{ik} c_k + \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} (G_{i,l} + L_{il}) d_l + \sum_{l=1}^{\max,l} w_l b_l + \\ \sum_{i=1}^{10,000} IE_i f + \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} LIE_{i,l} f - \sum_{i=1}^{10,000} \sum_{l=1}^{\max,l} (G_{i,l} + L_{i,l}) pr \\ \end{split}$$

$$\begin{split} \min \text{CO2,SO2, NOX or combination of them} \\ \text{can easily be modeled. Renewable energy} \\ \text{sources can benefit for this objectives.} \\ LIE_{il} + L_{il} \ge LD_{i,l} \quad \forall i,l \\ x_{ik} \le Cap_{ik} \quad \forall i,k \\ G_{il} \le CapDW_{il}w_l \quad \forall i,l \\ L_{i,l} \le CapDF_{il}w_l \quad \forall i,l \\ w_l \in \{0,1) \quad \forall l \\ x_{ik} \ge 0 \quad \forall i,k \quad G_{il}, L_{il}, LIE_{il} \ge 0 \quad \forall i,l \quad IE_i \ge 0 \quad \forall i \end{split}$$

58

Centralized with Distributed Generation vs. Distributed System Total Cost

Centralized Test System	Centralized with Expansion by Distributed Units
\$ 67,000,000	\$69,000,000
141,000 MW	115,000 MW
\$ 1,416,000,000	\$1,159,000,000
	\$1,000,000
	\$75,000,000
\$ 1,483,000,000	\$ 1,302,000,000
	System \$ 67,000,000 141,000 MW \$ 1,416,000,000

Centralized with Distributed Generation vs. Distributed System Total Cost

		Centralized Test System	Centralized with Expansion by Distributed Units	Due to distribution line	
	Electricity Generation Cost	\$ 67,000,000	\$69,000,000	failure	
	Demand Not Satisfied	141,000 MW	(115,000 MW)		
	Cost of Unsatisfied Demand	\$ 1,416,000,000	\$1,159,000,000		
	Steam Revenue		\$1,000,000		
	Building Cost		\$75,000,000		
	Building cost	\$ 1,483,000,000	\$ 1,302,000,000		
/					
	REI Third Annual Research Symposium, 2008				

Centralized with Distributed Generation vs. Distributed System Total Cost

	Centralized Test System	Centralized with Expansion by Distributed Units		
Electricity Generation Cost	\$ 67,000,000	\$69,000,000	Expansion with	
Demand Not Satisfied	141,000 MW	115,000 MW	distributed generation units benefits	
Cost of Unsatisfied Demand	\$ 1,416,000,000	\$1,159,000,000		
Steam Revenue		\$1,000,000		
Building Cost		\$75,000,000		
Building cost	\$ 1,483,000,000	\$ 1,302,000,008		
REI Third Annual Research Symposium, 2008 6				