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Further Advances in Forecasting Day-Ahead Electricity Prices 
Using Time Series Models 
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Abstract - Forecasting prices in electricity markets is critical for consumers and producers in 
planning their operations and managing their price risk. We utilize the generalized autoregressive 
conditionally heteroskedastic (GARCH) method to forecast the electricity prices in two regions of New 
York: New York City and Central New York State. We contrast the one-day forecasts of the GARCH 
against techniques such as dynamic regression, transfer function models, and exponential smoothing. 
We also examine the effect on our forecasting of omitting some of the extreme values in the electricity 
prices. We show that accounting for the extreme values and the heteroskedactic variance in the 
electricity price time-series can significantly improve the accuracy of the forecasting. Additionally, we 
document the higher volatility in New York City electricity prices. Differences in volatility between 
regions are important in the pricing of electricity options and for analyzing market performance. 
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1. Introduction 
 

In many parts of the world, the electric power industry 
is using competitive markets to meet consumers’ demand 
for electricity. Accurate forecasts of prices are critical for 
producers and consumers in planning their operations and 
managing their price risk. 

Recent work summarized the literature on electricity 
forecasting and in particular the use of time-series analysis 
and provided some accurate and efficient price forecasting 
tools such as dynamic regression model (DRM) and 
transform function approach (TFA) [1].  We extend this 
work by employing the generalized autoregressive 
conditionally heteroskedastic (GARCH) method, among 
others, to forecast electricity prices in New York City 
(NYC) and Central New York State (CNYS). Additionally, 
we incorporate prices for oil and natural gas, two fuels 
used by marginal generation units, into our forecasting 
models. Finally, we calculate volatility estimates, which 
are important in pricing electricity options and have 
important implications for analyzing market performance. 

Price volatility is one of several inputs in calculating the 
value of an option, e.g., by using the Black-Scholes equation. 
In addition, differences in volatility in subregions may 
indicate two separate electricity markets, perhaps due to 
transmission constraints and resulting higher production costs. 

Being able to identify when such separations occur is 
important because the separation of a generally competitive 
market into smaller markets provides the necessary but not 
sufficient conditions to exercise market power.  

We selected two regions of New York State for analysis 
to compare our forecasting and volatility results between a 
subregion of the state that is transmission-constrained and 
may be subject to the exercise of market power (NYC) 
with a subregion of the state that has surplus generation 
and where the exercise of market power is not a serious 
concern (CNYS).  

Conventionally, the econometric modeling such as 
DRM and TFA assumes a constant one-period forecast 
variance. Most of the economic time-series, however, 
violate the classical assumption of constant variance 
(homoskedasticity). Many time-series exhibit periods of 
large volatility followed by periods of relative tranquility. 
Thus, the variance at time t might depend on past 
information. As a result, if additional information from the 
past were allowed to affect the forecast variance, one 
might expect better forecast intervals [2]. In 1982, a new 
model with mean 0, and serially uncorrelated with 
nonconstant variances conditional on the past but with 
constant unconditional variance, was introduced [2]. 

Linear autoregressive conditional heteroskedastic 
(ARCH(q)) models consist of two equations. The first 
equation fits the time series to the best autoregressive 
moving average (ARMA) specification, whereas the 
second equation models the conditional variance as an 
AR(q) process where q is the square of estimated residuals 
calculated from the first equation. Since ARCH(q) requires 
long lags in the modeling of many applications, Bollerslev 
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introduced a GARCH(p,q) model in which both 
autoregressive (p) and moving average components (q) in 
the heteroskedastic variance are included in the current 
conditional variance equation to allow for a more flexible 
lag structure [3]. More precisely, the ARCH model allows 
limited number of lagged shocks to affect the conditional 
variance, whereas the GARCH model allows all the lags to 
affect the conditional variance by incorporating both the 
lagged values of the squared errors and the lagged 
conditional variance. 

Engle, Lilien, and Robins extended the basic ARCH and 
GARCH model to allow the mean of a sequence to depend 
on its own conditional variance and is called ARCH-M 
and GARCH-M [4]. Since the introduction of ARCH and 
its variations, there have been many applications utilizing 
such models in different economic and finance settings. 
Readers not familiar with ARCH, GARCH, and related 
variations are referred to [2] and [3]. 

 
 

2. Time-Series Analysis 
 

A general description of the assumptions used in time-
series models and the time-series modeling approach as 
applied to electricity markets is provided in Nogales et al., 
2002.  
 
2.1 The New York State Electricity Markets 
 

New York State implemented wholesale electric markets 
on November 18, 1999. It has a day-ahead market and a 
real-time market for energy based on locational marginal 
pricing. The New York Independent System Operator 
(NYISO) collects start-up, no-load, and up to ten energy 
bids in dollars per megaWatt-hours ($/MWh) that span the 
output of each generation unit. The NYISO performs unit 
commitment based on these day-ahead bids and clears for 
each hour for the next day (the day-ahead locational 
prices), which will be paid to selected generators and 
charged to day-ahead load. A real-time market occurs 
within the day to accommodate any system changes. 

Power flows are generally west to east and north to 
south as lower cost generation units outside of the greater 
New York City region export power to New York City and 
Long Island. The NYISO defines the NYC and CNYS 
zones. Differences in spot electricity prices between these 
two regions of the state are due primarily to transmission 
constraints that limit the ability to export cheaper 
electricity located in upstate New York to the load center 
in New York City. 

The New York State power system is summer-peaking, 
but also has a substantial winter peak. New York City 
accounts for approximately 30% of the energy usage and 

33% of the peak energy demand (NYISO, 1999). The 
CNYS zone consumes approximately 10% of the state’s 
electrical demand; for example, on August 9, 2003 at 3 pm 
(according to publicly available data on the NYISO 
webpage), CNYS demand was 2073 megaWatt-hours and 
total demand in New York State was 31,036 megaWatt-
hours. This power system has the expected hourly, daily, 
and seasonal trends with respect to demand and prices 
common to typical U.S. power systems in the Northeast 
and elsewhere. 
 
2.2 Data 
 

We constructed time-series of day-ahead, zonal, 
wholesale electricity prices in New York City and for 
Central New York State for 2 pm along with six input fuel 
prices (three oil and three natural gas price streams at 
different locations). Oil or natural gas is likely to be the 
marginal fuel at 2 pm. Fuel costs are the major component 
of a fossil fuel unit’s variable costs. Given that electricity 
prices in New York State are the marginal cost of 
providing one additional megaWatt-hour of electricity and 
the marginal megaWatt is typically a fossil fuel unit, we 
would expect a priori a positive relationship between the 
prices of fossil fuels and electricity prices. However, due 
to transmission constraints, which may require the backing 
down of inexpensive units and the ramping up of 
expensive units, locational electricity prices are also 
affected by congestion. None of the oil price streams, and 
only one natural gas price stream, are statistically 
significant. The natural gas price stream that is statistically 
significant is denoted TRNY to indicate the 
Transcontinental Gas Pipe Line Corporation daily prices 
reported by DRI/McGraw Hill. 

The electricity price time-series runs from December 28, 
2000 through March 31, 2003. Due to data limitations, the 
input fuel price data series began on December 28, 2000 
but ended at the start of December 2002 and were 
available only for “work days” (i.e., weekdays that are not 
holidays). 
 
2.3 Forecasting Techniques 
 
 We begin our empirical study by testing whether our 
data sets are nonstationary with a stochastic trend. If our 
data are difference stationary, we transform them into 
stationary sets by differencing. To test for stationarity, we 
conduct the Dickey-Fuller and the Phillips-Perron unit root 
tests (with and without time trend) on the level of NYC, 
CNYS, and TRNY natural gas prices for the entire sample 
period. Table 1 displays the results of unit root tests for 
each variable where the appropriate number of lags in our 
tests is determined by Akaike information criterion (AIC) 



Hany S. Guirguis and Frank A. Felder                                                                                     161 

specified as follows: 
 

AIC = T ln(residual sum of squares) + 2n        (1) 
 
where n = number of parameters estimated (p + q + 
possible constant term); and T = number of useable 
observations. 

Table 1 shows that our data set is stationary as indicated 
by Dickey-Fuller and Phillips-Perron tests at the 5% 
significance level. 
 
Table 1 Dickey-Fuller and Phillips-Perron for Unit Root 

Test (December-28-00 to November-25-02) 
 NYC CNYS TRNY 

Dickey-Fuller 
     Trend  
     No-Trend 

-7.22503
-7.22995

 
-7.73473 
-7.73372 

-3.37069
-3.91138

Phillips-Perron 
     Trend  
     No-Trend 

-12.92253
-12.93464

 
-14.31921 
-14.32340 

-10.09450
-10.51210

 
Next, we adopt four different estimation techniques to 

forecast the electricity prices in NYC and CNYS where 
the estimated parameters are allowed to vary over time:  
 

2.2.1 Dynamic Regression Model (DRM) 
The most parsimonious specification (i.e., the model 

with the least number of estimated coefficients) with 
significant coefficients can be stated as follows: 
 

 Pt = α1 + α2 Pt–1 + α3TRNYt-1 + ε t             (2) 
 
where the electricity price (Pt) is related to the values of its 
first lag and to the first lag of the natural gas prices 
(TRNYt-1).  

We find other fuel prices and lagged electricity prices to 
be statistically insignificant at the 5% significance level. 
 

2.2.2 Transfer Function Approach (TFA) 
The transfer function is an extension of the ARMA 

model, where the process of the dependent variable (Pt) is 
allowed to depend on other independent variables such as 
the energy prices. The most parsimonious specification 
with significant coefficients can be stated as follows:  
 
 Pt = α1 + α2Pt–1 +[(w0 + w1L+……..+ wnLn)/ 

(1-δ1L-……-δmLm)]TRNYt-d + εt       (3) 
 
where (L) is the lag operator indicating the number of lags 
for each variable, the number of numerator lags (n) is zero, 
the number of denominator lags (m) is zero, and the delay 
period for the series (d) is one. 

 
2.2.3 Exponential Smoothing (ES) with Trend and  

 Seasonality Presentation 
We employ the exponential smoothing method. For each 

period, we perform nine exponential smoothing techniques 
that exploit all the available combinations from trends (no, 
linear, exponential) and seasonal trends (none, addictive, 
multiplicative). For example, one of the combinations is a 
linear trend and a seasonal additive trend. We then choose 
the best-fitting model that minimizes the in-sample 
squared one-step forecast errors based on Schwarz 
criterion [5]. 
 

2.2.4 The Generalized Autoregressive Conditional  
 Heteroskedastic (GARCH) Methd 

Here we investigate whether electricity prices can be 
modeled to capture the volatility variations in the 
electricity market. We run Lagrange multiplier test for 
ARCH and GARCH disturbances [6]. The purpose of this 
test is to determine whether ARCH or GARCH are 
appropriate by evaluating the correlation of the square of 
the residuals (variance) by regressing the square of the 
residuals on a constant and on one lag value. First, we 
estimate the residuals from the DRM for the whole time 
series. Second, we regress the squared residuals on a 
constant and on their first lagged value. With a sample of 
T residuals, under the null hypothesis of no ARCH errors, 
the test TR2 converges to a χ2 distribution with one degree 
of freedom. 
 
Table 2 Lagrange Multiplier Test for ARCH of GARCH 

Errors (December-28-00 to November-25-02) 
 NYC CNYS 

Lagrange Multiplier 3.86 2.13 
Significance Level .049 .144 

 
As indicated by Table 2, the null hypothesis that the 

squared disturbances are uncorrelated is rejected in favor 
of the alternative hypothesis of ARCH or GARCH errors 
for the electricity prices in NYC at the 5% significance 
level. In contrast, the Lagrange multiplier test does not 
indicate the presence of the ARCH or GARCH errors in 
case of the electricity prices in CNYS. However, as shown 
later, modeling the conditional variance of the electricity 
prices in CNYS tends to improve significantly the 
forecasting performance of our models. 

We begin our analysis by searching for the most 
parsimonious ARMA specification of the electricity price 
equation where the energy prices are included. Next, we 
explore modeling the volatility of the electricity prices as an 
autoregressive conditional heteroskedasticity (ARCH) process, 
a generalized autoregressive conditional heteroskedasticity 
(GARCH) process or GARCH in mean (GARCH-M). We 
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try different specifications and reach the final preferred 
model specified by GARCH(1,1) and ARMA(1,0) with 
one lag of natural gas prices (TRNY) whose coefficient is 
significant for values between 0.1 and 0.35. Our jointly 
estimated specification can be stated as follows: 
 

 Pt = α1 + α2Pt–1 + α3TRNYt-1 + εt                  (4) 
 

  ht = β1 + β β ε2 1 3 1
2ht t− −+                       (5) 

 
where the appropriate log likelihood function of equations 
4 and 5 can be defined as follows: 
 

log ln( ) . ln .
( )
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t
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= −
−

− −
==
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2 2 05 05
2

22
π

ε
    (6) 

 
Then, we utilize the BFGS (Broyden, Fletcher, Goldfarb, 

and Shanno) algorithm to maximize the log likelihood 
function with respect to the αi’s and βi’s for i = 1 to 4. 

We initially estimate the electricity prices over the first 
100 days extending from December 28, 2000 to May 21, 
2001 using the four estimation techniques. Then, the one-
day out-of-sample forecasting performance of the four 
estimation techniques is evaluated. Next, we add one day 
at a time to the ending date, and repeat the process of 
estimating and forecasting the electricity prices over the 
next 377 weekdays extending from May 23, 2001 to 
November 22, 2002. The main advantage of such rolling 
window estimates is that our forecasts are more sensitive 
to including observations from the dataset, which helps in 
locating any extreme observations that might mask the 
causality between the electricity prices and their 
determinants. 
 
 

3. Numerical Results 
 

We use four measures of the performance of the four 
forecasting techniques: mean forecasting error (MFE), 
mean absolute forecasting error (MAFE), root mean 
squared forecasting error (RMSFE), and the Theil U 
statistics. These measures are expressed in the following 
equations: 
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f
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where Pf is the one-day forecasting price.  

Tables 3 and 4 report the MFE, MAFE, RMSFE, and 
the Theil U statistics at a one-step for New York City and 
Central New York, respectively. The results reveal that the 
forecasts of the rolling GARCH outperform the forecasts 
of the other estimation techniques for the 377 days. 
Additionally, our rolling forecasts locate four extreme 
observations on August 7-10, 2002. The extreme 
observations were identified by the significant 
deterioration in the forecasting ability of our techniques 
and the unprecedented increase in the electricity prices. 
(We are not correcting for all the extreme values, which 
would require adopting a formal technique that is beyond 
the scope of this paper.)  

Extremely high prices in electricity markets can occur 
for a variety of reasons. During the August 7-10, 2002 
period, the prices reached levels of $1024.91 and $907.77 
for NYC and CNYS, respectively. The electricity markets 
in New York State have a bid cap of $1000/MWh. 
Generation units cannot submit bids for energy above this 
cap, but electricity prices may reach higher levels due to 
locational marginal pricing. During these periods, there 
was either insufficient energy and reserves to meet load or 
there was an unusually pronounced ability to exercise 
market power. 

Although such observations are of important value, their 
nature and the probability of their occurrence seem to be 
unique and non-repetitive. Therefore, including these 
observations with such unusual high values may produce 
bias in parameter estimates and hence may deteriorate the 
efficiency of our forecasts. There is a growing body of 
evidence suggesting that the efficiency of both parameters 
estimates and out-of-sample forecasts can be improved if 
extreme values are accounted for in GARCH. For example, 
[7] attribute the excess kurtosis of the estimated residuals 
from GARCH models to the additive outliers in the stock 
market returns. When they account for such outliers, the 
adjusted data are normally distributed and the out-of-
sample forecasts of the GARCH improve significantly. 

Thus, we account for the four extreme observations by 
replacing them with the electricity price on August 6, 2001 
(omitting the four observations presents similar forecasting 
results). The GARCH model (the one most preferred from 
the previous step) is then re-estimated after replacing these 
extreme values. As Tables 3 and 4 indicate, the four 
statistics reveal a significant improvement when we account 
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Table 3 Comparison of Rolling One-Step Out-of-Sample 
Forecasts for New York City (May 23, 2001 to 
November 22, 2002) 

 MFE MAFE RMSFE U Theil 
Dynamic 
Regression -5.55965 22.35189 102.71036 0.49625

Transfer 
Function -5.62115 22.33291 102.67120 0.49608

Exponential 
Smoothing -14.7251 38.31004 230.66750 0.69260

GARCH 2.24775 12.68334 53.39037 0.33554
GARCH, 
Omitting 
Extreme 
Values 

0.84005 8.44462 14.93854 0.11706

 
for the extreme values in the electricity prices between 
August 7, 2001 and August 10, 2001. 

Table 4 Comparison of Rolling One-Step Out-of-Sample 
Forecasts for Central New York State (May 23, 
2001 to November 22, 2002) 

 MFE MAFE RMSFE U Theil 
Dynamic 
Regression -8.21430 19.78906 133.60543 0.63770

Transfer 
Function -8.16056 19.71594 133.51422 0.63749

Exponential
Smoothing -30.9230 55.52721 586.39677 0.88618

GARCH 1.43390 9.45427 43.20229 0.38025
GARCH, 
Omitting 
Extreme 
Values 

0.57665 5.30377 10.34263 0.11747

 
Figs. 1 and 2 (located at the end of the paper) show the 

forecasts of rolling GARCH as compared to actual 
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Using GARCH, Omitting Extreme Values 
 

0

20

40

60

80

100

120

140

160

5/
24
/2
00
1

6/
24
/2
00
1

7/
24
/2
00
1

8/
24
/2
00
1

9/
24
/2
00
1

10
/2
4/
20
01

11
/2
4/
20
01

12
/2
4/
20
01

1/
24
/2
00
2

2/
24
/2
00
2

3/
24
/2
00
2

4/
24
/2
00
2

5/
24
/2
00
2

6/
24
/2
00
2

7/
24
/2
00
2

8/
24
/2
00
2

9/
24
/2
00
2

10
/2
4/
20
02

Date

$/
M

W
h

Price Forecast  
Fig. 2 Actual Versus Forecast Day-Ahead Central New York State Electricity Prices (May 24, 2001 Through November 

22, 2002) Using GARCH, Omitting Extreme Values 



164                                              Further Advances in Forecasting Day-Ahead Electricity Prices Using Time Series Models 

electricity prices at a horizon of one day for New York 
City and Central New York State, respectively. Electricity 
prices ($/MWh) are plotted on the y axis and the sample 
days on the x axis. 

The content of the figures reveal the high accuracy of 
our forecasts, which capture the main movements in the 
electricity prices when accounting for the price volatility 
and the extreme values. 
 
 

4. Comparison Of Price Volatility In New York 
City And Central New York State 

 
Volatility is important in the electricity market for 

several reasons. First, it is critical in pricing electricity 
options, an important risk-management device commonly 
used by all types of market participants. Since the value 
and therefore the price of an option depend directly and 
significantly on volatility, accurate measures of volatility 
are critical. 

Second, comparisons of volatility between subregions 
of a market are important not only for pricing electricity 
options with different delivery points but also for 
determining whether there are multiple markets within a 
region. Subregions with different levels of volatility 
indicate separate markets, which is critical information in 
a market power analysis. 

We test whether the sum of the GARCH variance of the 
electricity prices in NY City (GVNY) is statistically greater 
than that of Central New York State (GVCNYS). In line with 
[8], [9], and [10] we use randomization tests to avoid 
making assumptions about the normality and statistical 

properties of the variance series. Our randomization test 
can be described as follows. First, we calculate the 
GARCH variance from equation (4) for New York City 
and Central New York State for the entire sample period 
extending from December 28, 2000 to November 25, 2002. 
We then calculate the historical ratio between the sum of 
GVNY and GVCNYS. Second, we perform a complete 
shuffle of all of the elements of a vector combining GVNY 
and GVCNYS. We then calculate the randomized ratio. Third, 
we repeat second and third steps 999 times. Finally, we 
calculate the p value of the historical ratio as the fraction 
of the randomized ratios greater than the original ratio. To 
account for the difference in the magnitude of electricity 
prices between the two regions, we define a normalized 
measure of the GARCH variance as follows: 
 

( )
( )
( )

NGV
GV
PNY t

NY t

NY t
=                          (11) 

 
and 
 

  ( )
( )
( )

NGV
GV
PCNYS t

CNYS t

CNYS t
=                    (12) 

 
where PNY and PCNYS are the electricity prices in New York 
City and Central New York State, respectively. 

Figs. 3 and 4 (also located at the end of the paper) 
depict the GARCH variance and the normalized GARCH 
variance for the New York City and Central New York 
State for the entire period. The figures reveal the higher 
level of volatility in New York City. Additionally, Table 5 
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provides a formal test for the variance ratio of the two 
regions. Table 5 shows that the probability of obtaining a 
ratio test greater than the historical, or unshuffled, ratio 
is .001. Thus, the results confirm that the electricity prices 
in New York City have a higher level of volatility.  
 
Table 5 Historical Ratios of the GARCH Variance of New 

York City to Central New York State and their 
Significance Level 

 
GV

GV
NC

CNCS
∑  NGV

NGV
NC

CNCS
∑  

Ratio Statistics 2.46 1.7 
Marginal Sign Level .001 .001 
 

It takes slightly less than 60 minutes to run the entire 
analysis just described on a PC Pentium II with 128 Mb of 
RAM at 1 GHz. This is a short enough time to allow these 
techniques to be used in practice. We used Regression 
Analysis of Time Series (RATS) software to conduct most 
of the computations. 

 
 

5. Conclusions 
 

In line with other studies such as [11], we conclude that 
incorporating volatility into price forecasting via the 
GARCH process significantly improves the forecasting 
performance over the other techniques evaluated. In 
particular, the GARCH process performance is a 
substantial improvement over DRM, TFA, and ES. 
Elimination of the few extreme values further improves 
the performance of the GARCH process. Extreme values, 
however, are important to estimate in many applications. 
More research is needed that combines GARCH with 
techniques that forecast extreme values. 

We also find that New York City has a larger daily 
volatility than does Central New York State. One possible 
explanation is that the market for electricity in New York 
City has more market power than does the upstate region. 
Higher volatility can be an indicator of collusive behavior 
or higher transmission constraints. More detailed analysis 
is required to distinguish between these two possible 
causes. We also notice that there are two peaks and pretty 
stable variance in between: additional investigation is 
needed to determine the cause. 

Our work can be extended in several directions. First, a 
formal technique to identify and correct for outliers instead 
of the use of visual inspection can be incorporated into the 
analysis. Second, the electricity price forecasting and 
volatility analysis can be applied to other hours in the day-
ahead market besides 2 pm, to the real-time market, and to 
other regions within New York State and elsewhere. 
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