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Executive Summary 
 

 Accepted practice absolves building energy modelers of responsibility for capturing many of the 

effects of occupant behavior by assuming fixed comfort targets and ignoring “unregulated” 

loads. This paper asks what we can learn by incorporating more detailed information about 

occupant behavior into models. It compares results of three approaches: conventional practice, an 

augmentation incorporating detailed occupancy patterns, and an augmentation incorporating 

detailed behavioral responses of occupants to evolving comfort conditions. We apply these 

models to a highly-instrumented commercial building in Philadelphia, PA, USA, using 

EnergyPlus and extensions based in Markov chain modeling and agent-based modeling. We 

share preliminary findings only because the project schedule was disrupted. Key preliminary 

findings are that (1) better occupancy data greatly improves energy model accuracy, (2) standard 

assumptions about occupant schedules are often wrong so that a more sophisticated 

representation is warranted, (3) better data about occupants’ adaptive responses only marginally 

improves energy model accuracy, (4) yet such data are quite valuable for predicting occupant 

satisfaction, and (5) incorporating occupancy data EnergyPlus needs additional hooks for 

incorporating occupant behavior. 

 

 

1. Introduction 
 

There is growing recognition that occupant behavior influences energy usage in buildings, but 

methods for incorporating its effects into energy modeling are not standardized. The purpose of 

this paper is to advance building energy modeling practice by explicitly comparing three models 

of the same building that incorporate occupant behavior in different ways.  

 

Previous research has demonstrated that some occupant behaviors are more influential than 

others, so that temperature set point changes typically outweigh changes to internal loads [Blight 

and Coley 2013], especially in small buildings [Azar and Manassa 2012]. Some building and 

system types are more strongly affected by human behavior than others, so that low-mass 

buildings with large amounts of glazing are more influenced by external climate than by 

occupant behavior [Hoes et al 2009], buildings in cold climates served by district heating are not 

very sensitive [Kyrö et al 2011], whereas lighting and plug loads vary with occupancy schedule 

[Yun, Kim and Kim 2012].  

 

Some occupant behavior is reasoned but much is habitual [Abreu, Pereira and Ferrão 2012; 

Masoso and Grobler 2010]. Occupants generally care more about thermal comfort than other 

indoor environmental quality factors [Frontczak and Wargocki 2011]. Occupants do not have 

homogeneous comfort preferences, and studies in a variety of countries have documented effects 

of personal attributes including age and gender, as well as social factors such as sense of control 

[Karjalainen 2013; Choi, Loftness and Aziz 2012; Indraganti and Rao 2010 (2); Santin 2011].  

 

Occupants also rely on a variety of physiological, psychological, and behavioral adaptive 

responses to uncomfortable conditions [Yun et al 2012; Liu, Yao and McCloy 2012; Cao et al 

2010; Indraganti 2010]. This variability in turn influences the efficacy of innovative building 

systems [Kalmár and Kalmár 2013; Saelens, Parys and Baetens 2011; Pfafferott and Herkel  
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2007]. In spite of the multi-faceted importance of occupants, a recent review concludes that few, 

if any, usable and validated models of the building-occupant system are available [Ryan and 

Sandquist 2012].  

 

Previous research has employed a variety of methodologies for representing occupant behavior 

in building energy models. The standard approach adopted in deterministic building physics 

models such as EnergyPlus is to reduce the occupant to a set of assumptions about temperature 

set points, daily schedules, and internal loads [Fumo, Mago and Luck 2010], perhaps 

incorporating diversity factors [Davis and Nutter 2010]. Probabilistic modeling has proved useful 

for characterizing how frequently occupants make specific adaptive choices in response to 

changing environmental conditions [Haldi and Robinson 2008; Herkel, Knapp and Pfafferott 

2008] and how their daily schedules vary [Duarte, van den Wymelenberg and Rieger 2013; 

Stoppel and Leite 2014; Tabak and de Vries 2010]. Monte Carlo analysis has identified which 

building parameters are sensitive to occupant behavior [Hopfe and Hensen 2011]. Neural 

networks have been able to predict user-sensitive appliance, lighting, and domestic hot water 

energy consumption [Swan, Ugursal and Beausolieil-Morrison 2011]. Markov process modeling 

has been effective for portraying more realistic occupancy schedules [Virote and Neves-Silva 

2012; Page et al 2008; Richardson, Thomson and Infield 2008] lighting energy use [Widén, 

Nilsson and Wäckelgård 2009], and window operation [Yun, Tuohy and Steemers 2009], and 

provides a basis for quantifying remaining uncertainties [Meidani and Ghanem 2013]. Agent-

based modeling has been used to simulate the diffusion of energy saving ideas through social 

networks within a building [Chen, Taylor and Wei 2012], predict user-controlled plug loads 

[Zhang, Siebers and Aickelin 2011] and it has allowed realistic representations of occupants’ 

adaptive responses to changing comfort conditions [Andrews et al 2011].  

 

The general trend is toward more differentiated analysis of occupants, activities, and schedules 

[Tanimoto, Hagishima and Sagara 2008]. Calibration and validation of models like those 

described in the previous paragraph requires substantial amounts of detailed data [Raftery, Keane 

and O’Donnell 2011]. Some studies rely on secondary data sets such as time-use surveys [Chiou, 

Carley, Davidson and Johnson 2011], but many collect primary data, as is done in the current 

paper.   

 

The rest of this paper summarizes the data and methods used, shares and discusses results, and 

offers conclusions about the value added by each approach to modeling occupant behavior.   

 

 

2. Calculation: Data and Methods 

Data 

Building 101: Study site description 

 

The study site is a 100+ year old brick structure that has been renovated over the years for 

changes in tenants.  Currently owned by the Philadelphia Industrial Development Corporation 

(PIDC), it contains 75,156 ft
2 

of gross building floor area with 61,000 ft
2 

of multi-tenanted 

conditioned space (https://gpicspoint.ecs.psu.edu/gpic/Shared Documents/Hub Wide Meetings -- 

OC MEETINGS/BP3/2013.09.09-10 DOE External Review/04.4 - Building 101 Testbed R4 - 
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Rich.pptx last accessed 1/31/14).    The building is positioned on the north/south axis with each 

of 3 floors and basement level having two main wings (See Figure 1).  As of August 2013 the 

building was reported to be 70% occupied.   

 

 

 



Incorporating occupant behavior into energy models January 2014 

 

6 

 

 
Figure 1: Building 101 Floor Plan 

 

 

Building 101 has been the subject of much detailed engineering fieldwork by Hub researchers, 

hence that is not addressed further here. Refer to Xu (2012) for a full energy analysis of the 

building, including the development and calibration of the EnergyPlus model used as a baseline 

for this study.  

Building 101 Information Portal Description 

 

The CDH Energy website generates data for over 1500 physical measurements on Building 101 

as CVS files (ASCII formatted text-files) which can be downloaded to local computers after 

system authentication. The measurements collect data for most of the systems operating in the 

building. 

 

In particular, the building occupancy data, is displayed as integers representing the count of the 

number of people passing in each direction through 6 sensors for every 5-minute interval of the 
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day, 7 days a week. The daily cumulative count for each sensor, which is reset every 24 hours at 

11:00 PM, is also reported. Since for each sensor there are four measurements reported (entries, 

exits, cumulative entries, and cumulative exits) there is a total of 24 data streams available. The 

corresponding dates and times are available for each of these 24 data entries. 

 

Four out of these six sensors are placed in such a way as to capture the entries and exists to the 

entire building (except for a small secondary door). 

 

Data was extracted for the dates from February 1st 2012 up to June 11th 2013. The cumulative 

data showed to be incomplete, so it was decided to work with the raw counting data. 

Recalculating the cumulative data, and subtracting the exits from the entries (with a delay of one 

time step, namely 5 minutes) we can have a good approximation of the number of people present 

in the building for every 5-minute period in the data sample. A quick inspection reveals weekly 

cycles such as the one in Figure 2. 

 

 
Figure 2: Sample Occupancy Data for a Week 

 

In Figure 2 it is shown the weekly evolution of people in the building from Sunday to Saturday, 

peaking on Wednesday. This type of weekly evolution is typical throughout the data. 

Building 101 occupant behavior fieldwork 

 

Fieldwork included an assessment of occupant responses to energy efficient retrofits in tenanted 

spaces in Building 101.  Our work thus far has illustrated that tenants of commercial office space 

can have an effect on building performance through the actions that they take to change 

conditions in their workspace that detract from thermal or lighting comfort or support for 

productivity.   The “living lab” of Building 101 and its staff facilitated this investigation in an 

energy efficient, highly instrumented context that must compete with other commercial office 

building owners for tenant leases.   

 

The study objectives were to better understand how occupants use their leased office spaces in 

ways that affect the projected energy performance of the building.  The hypothesis is that 

integrated studies of leased office spaces will reveal readily available as well as longer term 

opportunities for greater energy savings with little to no additional investment that also improve 

tenant satisfaction.   
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Methods 

IRB approval was secured for a multi-method approach to record independent observations and 

self-report by tenant representatives and occupants of leased office space at Building 101.  An 

initial walk-through guided by facilities personnel incorporated initial observations and contacts 

with tenants as perspective participants in the study.  Upon return, consenting tenants were 

engaged in in-depth interviews that developed information including the organization’s mission, 

number of employees, their schedules in the office, and overall lighting and temperature fit with 

office needs.  Short intercepts were conducted with tenant employees and included questions 

asking individuals to compare the typical lighting and temperature they have compared to their 

preferred levels. Photo documentation and spot measurements of temperature and light levels 

were taken in conjunction with interview comments.   An online building-wide anonymous 

survey focusing on occupancy patterns and uses of space and equipment was also distributed 

through facilities management.  Finally, targeted plug load metering was implemented in 

tenanted and some common spaces where their measurements could be used to compare 

appliance use and energy consumption to inform future strategies toward energy efficiency. At 

this point the integration of interview and observational data analysis is limited because of a 

change in funding support and so preliminary findings are reported herein.   

Preliminary Findings  

Eight of 11 tenants were engaged for this occupant behavior evaluation of their occupied offices.  

Eight tenant interviews and 20 intercept interviews were conducted.  Interviews were analyzed 

for themes associated with temperature and lighting adaptations performed by occupants to 

improve their lighting and HVAC experience, and on the availability of information about saving 

energy.   

 

Interviews and observations.  Data was collected onsite between November 2013 and January 

2014.  Suites were serviced by forced hot air and for some also hydronic heat systems.  Lighting 

fixtures across suites were primarily fluorescent pendants and sometimes included mini 

pendants.  Tenants’ were generally pleased with the building, location, views, and response by 

management personnel.  Their experiences with temperature and lighting comfort, however, 

varied somewhat with the location and size of their suite and the source of heating, factors that 

contributed to the adaptive behaviors occupants took to improve their comfort in the workspace.   

Tables 1 and 2 summarize the observational and interview data that helped characterize occupant 

behaviors in response to work area temperature and lighting parameters.   

 

Adaptive behavior to improve thermal comfort was influenced by location of workspace in the 

suite, size of office space, and type of heating among other factors.  While many relied on using 

clothing layers, several tenants reported use of portable heaters in their suite, an important 

consumption of energy.  Other suites were observed with tenant-applied obstructions to vent 

systems either as a direct effort to improve comfort or as secondary to fit out that is not 

coordinated with building design.  Similarly, adaptive attempts to improve lighting conditions / 

control glare often resulted in blinds or other shading devices drawn and not being reset.  Fit out 

also played a role in occupant-led lighting management when light fixtures, some of which were 

in need of maintenance, were misaligned and not located over work activity locations or 

partitions obstructed windows.   
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Table 1.  Summary of Observations, Tenant Occupied Spaces 

Topic Example Design Note 

Adaptive actions in office: 

Temperature management 
 Vents blocked with boxes 

or carpet tiles 

 

 Portable heaters in use 

 

 

 Blocking vents with 

materials 

 Vents located close to seated occupant 

 

 

 Closed offices have cold exposed brick 

finish, cool lobby with extensive glass and 

older windows 

 

 No shut off to local heating cabinets 

Adaptive actions in office: 

Lighting management 
 Blinds down in the South, 

up in the North  

 

 Overhead lights dim 

 

 Lights on in one office 

without occupant 

 

 Task lighting not used 

 

 Sheets of paper hanging 

from window to block glare 

 Blinds behind partitions are difficult to 

access 

 

 Diffusers need cleaning, bulbs out 

 

 No override ‘off’ switches 

 

 

 Task / cabinet lighting not placed over 

work area 

 

 Blinds cover only portions of windows 

Exposure Glare Office affected can vary with season, time of 

day 

Fit-Out  Support for daylighting into 

workspace 

 

 Obstructions to daylighting 

 

 

 

 Multiple accessary task 

lighting 

 

 Obstructions to HVAC 

performance 

 

 

 

 

 Panels on partition tops 

 Lower partitions facing windows 

 

 Tall partitions in front of windows  

 Blinds down to control glare & infrequently 

readjusted 

 

 Overhead lighting not placed over desk work 

activity area 

 

 Hydronic heat cabinets are used as work 

surfaces 

 

 File cabinets placed over floor vents 

 

 Materials placed on heat cabinet vents 
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Table 2.  Summary of Tenant Reported Features 

Topics Example Design Note 

Workplace schedule Most are full-time employees Majority of occupants there every day 

Adaptive actions in 

office: Temperature 

management 

 Portable fans in summer 

 Portable heaters in winter 

 Extra clothing, jacket 

continuously, blankets, long 

underwear  

 Cool in summer &/or winter 

 

 Cardboard used on window seams 

 

 Vents blocked to reduce temp 

 Windows opened 

 

 Cold in early am but thermostat 

does not report accurately  

 

 Some tenants work with blinds and 

sunlight schedules 

 

 Contact with management was 

every day, now less frequent 

 Possible inadequate / excess summer cooling 

and inadequate heating in winter depending on 

tenant location; vacancy may affect thermal 

comfort performance 

 

 

 

 Windows allow drafts on coldest days 

 

 

 Space is small & intended as open area, 

downsized overhead duct space with no returns 

for air circulation 

 Tenants do not perceive thermostats as being 

functional & some thermostats are controlled 

by other offices 

 Blinds are non-motorized 

 

 Management easily accessible / readily 

available 

Adaptive actions in 

office: 

Lighting management 

 Lighting discomfort, headaches so 

will sometimes work without 

lights 

 

 Lights stay on in unoccupied 

spaces 

 

 No use of task / cabinet lighting 

 

 Sheets of paper hanging in front of 

windows to stop glare 

 Limitations with lighting switches (allows 

either all on or all off) or do not exist  

 

 Lighting schedules can vary by office needs 

 

 Placement of lighting not coordinated with 

desk work area 

 

 

 Blinds cover only certain parts of windows 

Adaptive actions in 

office: use of appliance 

Energy intensive appliances  

 
 Refrigerator water filter feature not present or 

inoperable  

 Infrequent use of common space energy-

intensive kitchen appliances 

Exposure  Glare management 

 View 

 Shades often not readjusted when down 

 Views overlooking parade grounds are 

important 

Fit-Out Layout coordination with building 

design & objectives 

 

 

 Planned design of coordinated building / fit-

out is often missing 

 

 Offices have grown with different fit-out needs 

Availability of Energy 

Saving Policy / 

Information  

 Communications about energy 

saving behavior 

 When questions / problems are 

logged they are addressed quickly 

 Workshops and sessions 

 None specific to energy savings from either 

building or employer 

 

 Communications with facilities appear fluid 

 

 Periodic workshops are not well advertised 
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Plug load metering.  Substantial energy consumption was also detected on some common 

appliances where energy performance might be improved.  A total of 33 meters were installed, 

primarily on pantry or kitchen appliances.  One meter was used to measure a task light but 

removed because of negligible kWh readings. Because of the contracted period for completing 

the study, plug load meter installations provided for approximately 2 weeks’ worth of data 

collection.  For one appliance (industrial refrigeration case shown in Figure 3) a meter was 

installed for the day of the field site visit.  The data retrieved and reported here is preliminary but 

offers some information that suggests potential areas of additional and readily achievable 

opportunities for increased energy savings.  

  

 
 
Figure 3: Underutilized refrigerator 

  

 

 

Methods 

EnergyPlus building physics model & calibration process 

 

EnergyPlus is a US DOE supported energy analysis and thermal load simulation program (see 

http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm).  The program is 

capable of calculating and integrating details of heating and cooling loads, conditions from 

HVAC and coil loads, and energy consumption of primary plant equipment in text format.  

EnergyPlus is a stand-alone simulation program that is available in a number of graphical user 

interfaces.   

 

Xu (2012) provides a detailed, step-by-step account of the data collection, model preparation, 

and calibration process used to create the EnergyPlus model of Building 101, summarized in 

Figure 4.  

 

http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm
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Figure 4: Procedure to build an “as-operated” building energy model 

Source: Xu (2012, pg., 81) 

Markov Chain Models 

 

We will cover some of the basic concepts of Markov Models theory along with some current 

efforts found in the literature to make use of Markov Models to model building occupancy 

behavior and building energy usage estimation. 

 

Review of Markov Models 

 

Markov Models are a family of models that rely in the assumption of the verification of the 

Markov Property. One way to understand this property is to think of a stochastic system evolving 
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in continuous or discrete time stages, jumping at each time epoch from one system state to 

another with some probabilities. The set of system states has to be finite (or at least countable). 

Then, given a present state of the system, the probability of jumping to another state in a non-

Markov system is in general dependent on all the previous state-history, while in a Markovian 

system this probability depends only on the present state. This property can be then stated as: 

 

“All the information for estimating the system’s future behavior is available (stored) at the 

present time.” 

 

Or in an equivalent form: 

 

“The system’s future behavior is only dependent on the present time, and it is independent of the 

past.” 

 

In a more rigorous way, if                                , and  ( )    is the system’s 

state at discrete time  , then 

 

    ( (   )    |  ( )     (   )     )       ( (   )    |  ( )   )     (   ) 

 

An example could be if in an office the probability of turning off the lights at a certain hour 

depends only on the light condition at the previous hour, and not on the whole day light-history. 
 

Considering a finite set of states,              ,  and a Markovian system evolving on 

discrete time (this is called a Markov Chain, or Markov Process). The set of transition 

probabilities 

 

   ( )       ( ( )    |  (   )   )        

 

is usually arranged in matrix form in the transition matrix 
 

   (

       

   
       

)  

 

 

 

 

These probabilities, assuming that the true values are available, are sufficient to describe all the 

dynamics of the system and its stochastic evolution. 

 
The transition matrix gives at row   the probability distribution of the next state if the system is currently in 

state  ( )   , since this is a distribution, it is required that the row-sums of the   matrix are one (this is 

called a stochastic matrix). The individual probabilities    , however, can be zero if certain state-transitions are 

not allowed, or 1 if there is only one transition permitted. 
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For example, if we have three states          , and the transition matrix is the following: 

 

   (
         
         
         

) 

 

Then, looking at the third row, the probability that the next state will be state 1 given that we are 

in state 3 is            , the probability to jump to state 2 from state 3 is         

   , and the probability of remaining in state 3 is            . Also, the probability of 

leaving state 3 is                        . From the second row we see that if the 

system is in state 2, then it cannot go to state 1 in the next step, nor can it stay in state 2, the only 

possibility is to transition to state 3 with 100% probability (deterministically). 

 

Calculating powers of these matrices, one can obtain the transition probabilities for larger 

numbers of steps, for example        holds the probabilities for two-step transitions between 

any two states. 

 

Under certain technical conditions, such as finite number of states and aperiodic systems, the 

larger powers of this matrices start to converge to a matrix which holds, at every row (all rows 

are the same), the stationary distribution   (          ): 

 

   
   

    [
 
 
 
]  

 

The    values are interpreted as the long-run average probability of being in state  , or the overall 

expected long-run proportion of time spent in state  . For the previous example we have 

 

   
   

    (

             
             
             

)  

 

then,    (
 

  
 

 

  
 
  

  
)  (                    ), which are the overall fractions of time spent 

in each state in the long run. 

 

For an application problem, the transition matrix can be calculated by defining the states of the 

system, keeping track of the transitions and calculating the proportion of times that any transition 

happens from a given state. Of course, the longer the longer the period of time that this process is 

observed, the more precise the matrix will be. 

 

Once that the transition matrix for a system is known, we can simulate the stochastic process 

using Monte Carlo sampling. For this we calculate the cumulative distribution of each row 
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distribution in the   matrix (cumulative row sum), and add a column of zeros at the beginning to 

form the      matrix: 

 

   (
         
         
         

)        (
            
            
            

) 

 

Each row in the      matrix then defines a set of intervals each one corresponding to a potential 

state (in the first row of the example the intervals are [     ] [       ] [       ]). Then, drawing 

a random number uniformly in the interval [   ], and selecting the interval in which the random 

number fits, we effectively select the next state of the system considering the transition 

distribution of probabilities. If the number falls in a bordering probability shared by two intervals 

the tie is broken arbitrarily. If, as in the example second row, some intervals are of the type [   ] 

or [   ], then it is assumed that the drawn sample cannot lie in that interval and the next interval 

is checked. 

 

Continuing with the example, consider that the system is in state 3 at the current state and we 

want to determine randomly the next state but considering the distribution corresponding to the 

third state in the third row of   (in which remaining in the state 3 is 6 times more likely than 

transitioning to state 2, and 2 times more likely than transitioning to state 1). Then, we draw a 

random number uniformly in the interval [   ],         , which falls in the third interval 

[       ], and thus the next state for this instance is the third state. Repeating this experiment 

many times, reveals that the selection of the next state follows indeed the distribution of the third 

row, that is that state 3 is selected 60% of the times, state 2 30% of the times, and state 1 only 

%10 percent of the times. Many software packages (such as Excel, R, Stata, Matlab, etc) have 

random generators of uniformly distributed numbers. 

 

The utility of this type of simulation depends on the granularity of the number of states. Defining 

two states could give too little information on the evolution if the system but at the same time it 

could be calibrated with little data. On the other hand, defining ten states requires a long period 

of simulation/calibration and data to capture all the variations but could yield a more flexible and 

meaningful model. 

 

There is a lot more information that can be obtained from the   matrix, for example the expected 

number of time steps before reaching certain specific set (or a set of states), or the probability of 

ever returning to a specific state. Calculating this measure, however, requires some knowledge 

on Probability Theory and Linear Algebra. See the book of Kulkarni (2009) [1] for a reference in 

this subject. 

 

From the previous discussions one can obtain some insights in the fact that models based in 

Markov Chains are complete enough to convey at the same time average information of the 
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system by means of the long-term distribution calculation and also reproduce the transient 

stochastic evolution of the system. 

 

In a more complex family of stochastic processes we count the Markov Decision Processes. In 

this type of processes not only the next state is random, but also the state distribution is 

randomized. This is similar to having a number of, in general different, transition matrices and 

using each one at some time step depending on some “distribution of distributions”. This type of 

modeling is a standard approach in the field of Stochastic Dynamic Programming and makes use 

of the Markov Property that many systems have to efficiently solve large-scale optimization 

problems even without the need to enumerate all states of the system. 

 

Markov and Probabilistic Models in Occupant Scheduling and Energy Performance 

 

Wilke et al. (2013), France [2], are recently working on developing residential building 

occupancy profiles for time-dependent activities, as parts of the inputs needed for other dynamic 

models of energy performance in residential buildings. They count with very precise and specific 

time-use survey data on occupant behaviors in France for the 1998-1999 year period. 

 

The data is based on three time-dependent measures: 

 

i. Probability of being in the residency 

ii. Conditional probabilities of engaging on an activity while present in the residency 

iii. Probability distributions of activity duration 

 

Processing this information they produce a full occupant behavior probability schedule as shown 

in Figure 5. 
 

 
 

Figure 5: hourly activity proportion schedule, Wilke et al [2] 
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The data is then analyzed using Bayesian theory, studying the activities duration distributions 

and normalized to obtain hourly probability distributions or occupancy schedules as shown in 

Figure 6. 
 

 
 

Figure 6: hourly activity probability schedule, Wilke et al [2] 

 

 

The individuals are assumed at first to be of only one kind, but then the model is refined to be 

able to incorporate variations in activity behaviors or “sub-populations”. The transitions between 

to activities are modeled by means of Markov processes. Wilke et al, present also calibration and 

validation techniques with which they refine and test the predictive capabilities of their schedule 

processing models. 

 

Dodier et al. (2006) [3], make use of Belief Networks, which are a class of graphical probability 

models to answer, from occupancy data, simple and complex queries such as: number of people 

expected in the building in one day, sensor malfunctioning, conditional information as presence 

in an office given that a specific sensor is malfunctioning, average conditional information such 

as typical readings of over-sensitive sensors. 

 

Given some events           (which can represent: presence in an office, malfunctioning of a 

sensor, etc.) they place them in a graph according to their dependencies (see Figure 7). 

 

 
Figure 7: Belief network, Dodier et al [3] 
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Then, the probabilities of occurrence of each one of these (maybe conditional) events can be 

calculated directly from the data using counts and conditional probability definitions: 

 

 (   | )   
 (     )

 ( )
  

∑ ∑  (         )  

∑ ∑ ∑ ∑  (         )    
 

 

This approach has the weakness that it requires large quantities of data to construct a model 

sensitive enough to distinguish the dependencies on all the defined events. 

 

In a different two-level probabilistic approach, Page et al. (2008) [4] develop an algorithm for 

the simulation of occupant presence as an input for occupant behavior models. 

 

The model consists of an inhomogeneous Markov chain (probabilities changing in time) for 

modeling the occupancy interrupted by occasional periods of long absence/presence. The model 

is capable of accurately reproducing occupant arrival times, departure times, periods of 

intermediate absence/presence and periods of long absence/presence. 

 

The model works as a Markov process in which each transition is dictated by probabilities that 

decay or increase through time according to counters that are fed into calibrated probability 

density functions. These distributions are mostly exponential, which is a classical approach to 

model expected duration times. The data for the calibration is obtained from movement sensors. 

 

Virote et al. (2012) [5], make direct use of Markov chains to model the agent transition between 

states in an agent-based model. They define the system’s states according to the different user-

usage combinations (which tend to be huge) to make direct energy consumption estimates. They 

describe the chain by means of its transition matrix and make predictions based on the transition 

probabilities. As mentioned before, these predictions tend to “average out” if the prediction 

horizon is large enough. 

 

This type of approach has promising results in the sense that the model effectively learns the 

occupant behavioral patterns from the building and it reliably reproduces them to give accurate 

predictions of the building energy consumption. It is also possible in this model to identify 

potential areas of energy waste by studying the average time spent in high-energy usage states. 

 

Lastly, Meidani et al. (2013) [6] make a type of generalization of the pure Markov Chain model 

motivated by the assertion that some of the uncertainties in these evolving systems cannot be 

captured in the calculation of the transition rates/probabilities from finite samples (such as data). 

They account for such variations by considering randomized transition matrices (which yield a 

type of models called hidden Markov chains). In these models, the transition matrix to be used at 

each step is not fixed. This type of formalism can capture fluctuations in the environment in 

which the chain evolves, such as weather variations or the presence of rare events. 
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Agent-based model 

 

One of the main themes in this paper is to address a need to reflect the response of occupants for 

better building simulation [Andrews et al 2011; Andrews et al 2012]. After the fieldwork 

experiments, the lighting system, the HVAC system, and plug load information of the building 

was modeled and calibrated in EnergyPlus 8.0.0 [USDOE 2012; Ke Xu 2012]. EnergyPlus is 

widely used Building Information modeling (BIM) that helps designers to understand the 

physical characteristics of the building. It, however, still lacks of the behavioral element.  Recent 

research tries to integrate the user behavior elements into BIM [Shen 2012; Andrews, Senick, 

Wener 2012]. 

 

This paper modeled occupants’ thermal comfort actions (adjusting thermostat set points, turning 

on/off space heater, opening/closing the windows and door, and changing winter/summer 

clothes) and their influence on airflow rate entering their thermal zone by using set points and 

infiltration schedules. Occupants’ lighting comfort actions (turning on/off headlights, turning 

on/off task lights, opening/closing windows blinds) were modeled using equipment schedule. 

  

In modeling the occupant behavior that update the schedule, this study adopts two paradigms to 

specify theories and processes of human behavior. Agent-Based modeling (ABM) provides a 

paradigm of simple entities, called by agents that respond respectively to the environment.  ABM 

is widely used in the ecological domain, but not very straightforward in representing human-like 

behavior [Epstein 2006; Axelrod 1997]. Belief, Desire, Intention (BDI) is a paradigm of agents 

that are based on a psychological view of how people behave. BDI characterizes the process of 

human decision-making, such that autonomous agents follow five procedural steps in making 

behavioral decisions: establishing beliefs, desires, and intentions, developing plans, and deciding 

to carry out a particular plan of action[Rao and Georgeff, 1998]. NetLogo [Wilensky and Rand 

2013] is used to develop an integrated model of the two paradigms.  Calibration is done using 

survey and interview data from individual building occupants, plus building-wide performance 

data for building 101. The model is validated by using it to predict outcomes (expressed as 

usability metrics) for an additional building. 

 

The complete modeling logic is summarized in Figure 8 below. It contains a building 

performance submodel that updates the state of the indoor environment over time. It contains a 

human agent submodel that simulates individual and shared decisions of occupants as they 

experience and react to changing environmental conditions. It also includes a file populated with 

information about the current state of controllable and uncontrollable building features. This 

modeling framework was introduced in Andrews et al [2011] and extended in Andrews et al 

[2012]. 

 

A building performance submodel has inputs such as building site conditions and design choices. 

Inputs for human agent model include occupancy schedule, occupant preferences and 

capabilities.  Outputs include the usability measures of effectiveness, efficiency, and satisfaction 

[Andrews et al 2011]. 
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Fig 8: Modeling system logic 

Source: Andrews et al 2012 

 

EnergyPlus hot-linked to agent-based model 

 

The Building 101 simulation study consists of three main components: the building energy 

model, the occupant behavior model, and the integrating model. Each is programmed with a 

different software application. The building energy model uses the EnergyPlus modeling engine 

that characterizes the energy performance of the building design 

(http://apps1.eere.energy.gov/buildings/energyplus/). The occupant behavior model is 

programmed in the NetLogo agent-based-modeling environment (www.netlogo.org). The 

integrated model is a model that allows a communication between the occupant behavior model 

and the building energy model by using Java programming language 

(http://www.oracle.com/technetwork/java/index.html). 

 

The building energy model, using EnergyPlus, incorporates occupant behavior component within 

it at a very limited level. The picture of having the building physics and the building occupants to 

perform an active-reactive interaction drives the overall goal of this simulation study. The 

building energy model does not allow users to modify the input variables, located in the .idf file, 

on the fly while running the simulation (Figure 9). In other words, users modify the .idf file prior 

each overall simulation run. It also does not receive values exogenously for all the input 

variables. The integrated model runs in two-step for each simulation-hour. The model calls the 

building energy sub-model and the occupant behavior sub-model alternately. Initially, the 

integrated model runs the building energy sub-model in order to create the building environment. 

The model, then, runs the occupant behavior model in order to simulate building occupants’ 

sensation and adaptive behavior towards the surrounding building environment. The occupant 

behavior model will consider the building environment conditions, resulted from the building 

energy model run at the previous time period, and the occupants’ physiological preference 

towards the environment (Figure 10). For example, the task requires to run a 24-hour simulation 

period, the integrated model will call both the occupant behavior model and the building energy 
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model for 24 times. As a result, the overall running time for the building energy model is 

relatively faster than the integrated model. However, running the building energy model does not 

reflect the reality of building occupants’ adaptive behaviors. Modeling the adaptive behavior 

requires the occupants to evaluate and make changes of the environment in every cycle of the 

overall simulation period. 

 

 

 
Figure 9. Building energy model parameters 

 

 

 

 
Figure 10. Occupant behavior parameters 

 

Energy Plus Parameters 

Occupancy Schedule: 

• Number of People (num) 

Thermal Adaptive Schedule: 

• Temperature SP (oC) 

• Local Heater (num) 

• Local Fan (on/off) 

• Temperature SP 

• Humidifier/Dehum 

Lighting Adaptive Schedule: 

• Overhead Light (on/off) 

• Task Light (num) 

• Windows Blinds (open/close) 

IAQ Adaptive Schedule: 

• Air Purifier (on/off) 

• Windows (open/close) 
Lessons learned from commercial buildings 

10 

• Agents do not move. 

• Less number of activities 

performed by occupants. 

• Design choices are limited. 

• Working hours are fixed 

(Mon – Fri, 8AM to 5PM) 

• Easier to model. 
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How the model simulates comfort and satisfaction. 

 

The integrated model has not yet completed to perform calibration for both comfort and 

satisfaction simulations on Building 101. The model, however, successfully follows the logic of 

occupants’ comfort and satisfaction (Andrews, Chandra Putra, and Brennan, 2013). In the 

thermal comfort scenarios, occupants perceive the environment as Too Hot, Thermally Neutral, 

or Too Cold. The set of adaptive behaviors occupants perform range from Do Nothing, Adjust 

the Thermostat, Turn On/Off a Personal Fan, Turn On/Off a Personal Space Heater, and 

Add/Remove Clothing. In experiments simulating illumination levels, occupants perceive Too 

Bright, Illumination-Neutral, or Too Dim. Occupants can respond such sensations with the 

following adaptive behaviors: Do Nothing, Adjust Window Blinds, Turn Task Light On/Off, and 

Turn Overlight On/Off (Table 3, 4) 

 

 

 
Table 3. Perceptions and adaptive behaviors 

 

 
Table 4. Disutility values 

 

 

3. Results 

Fieldwork 

The observational and interview data are summarized in Tables 1 and 2. An additional study of 

unregulated plug loads in common areas yielded interesting results. Figure 11 shows average 

daily electricity use per tenant by appliance. Figure 12 shows four major appliance types and the 

variation in their energy use across instances. Interestingly, refrigerator electricity use varied 

widely across tenants. This could be due to different sizes, vintages, and frequencies of opening.  

Perceptions and Adaptive Behavior 

Perceptions/
Adaptive Behavior 

Do 
Nothing 

Thermo
stat 

Space 
heater Blinds 

Win-
dows 

Fan
s 

Change 
Clothes 

Overhead 
lighting 

Task 
light 

Cookin
g app. 

Dishw
asher Shower Faucet Toilet 

Too hot/Too cold X X X X 

Too bright/Too dark X X X X 

Too dirty -IAQ- X X X X 

Dish stock > X X 

P body care habits X X X X 

P sustenance habits X X X 

P eliminate habits X X X 

15 

Disutility values 

16 

  

Environmental 

Impact Effort Discomfort Cost 

Do Nothing Lo Lo Hi Lo 

Thermostat Hi Lo Lo Hi 

Space heater Hi Lo Md Hi 

Blinds Lo Hi Md Lo 

Windows Lo Hi Md Lo 

Ceiling fans Lo Hi Md Md 

Overhead lighting Hi Lo Lo Hi 

Task light Md Md Lo Md 

Cooking app. Hi Hi Lo Hi 

Dishwasher HI Hi Lo HI 

Shower Hi Md Lo Hi 

Faucet Lo Lo Md Lo 

Toilet Md Md Md Md 
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Figure 11: Appliance electricity consumption by tenant in Building 101  

 

 
Figure 12: Variation in appliance electricity consumption across instances in Building 101 
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Conventional EnergyPlus model  

 

Figure 13 shows high-level results of the model calibration process carried out by Xu (2012). 

Relative to actual utility bills, the model substantially over-estimates natural gas use in the swing 

months and under-estimates it slightly during the winter months. The model substantially under-

estimates electricity consumption during the spring and summer months but more closely 

approximates it during the winter months. Xu (2012) provides much additional detail on the 

performance of this model, and concludes that, although this is an envelope-dominated (rather 

than internal load dominated) structure, unverified equipment efficiencies, usage schedules, and 

plug loads are among the major contributors to discrepancies between modeled and measured 

energy performance. This begs the question of whether additional detail on occupant schedules 

and occupant behavior might be helpful.  

 

 
Figure 13: Monthly energy use comparison 

Source: Xu (2012, pg. 94) 
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Markov chain model  

 

Occupancy Schedules 

 

Some important inputs of Energy Plus models, on which many of the energy calculations 

depend, are the people schedules. These schedules define the number of occupants to be 

expected in the different zones of a building at each time for a full year of simulation. A common 

approach is to define separate schedules for zones that have very different occupation levels (e.g. 

offices versus hallways). The schedules are defined in a bottom-up fashion by defining daily 

schedules that are aggregated into weekly schedules and so on until completing a full year. A 

daily schedule can be defined by enumerating the proportion or fraction of occupancy out of a 

maximum occupancy level (which is set separately, as another input) expected at each hour of 

the day. 

 

It is common to use simple daily schedules in the form of step functions, which would 

correspond, for example, to schedules like the following: between 0:00 AM and 8:00 AM, expect 

10% of occupancy (0,1 times the maximum occupancy level set), between 8:00 AM and 5:00 

PM expect 80% of occupancy, and expect 10% for the remaining hours. These types of 

schedules have the advantage of being very simple and easy to feed into the models, but could be 

oversimplified. 

 

We propose to enrich these schedules with the people counter data in order to try to better predict 

energy usage for building 101. 

 

Average Schedules 

 

A first approach would be to use an average schedule, constructed by taking the arithmetic 

average of the weekly people occupancy data (the average of the schedules as the one showed in 

Figure 2). Figure 14 shows in a black line this average schedule for the retrieved data together 

with its deviation in red lines. The average occupancy and deviation are calculated for each hour 

using all the weeks available and the deviation is then added and subtracted. 

 

 
Figure 14: Average Schedule and Deviation 
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It is clear that, except for hours in the night and maybe weekends, the average schedule is over 

simplistic in the sense that it does not capture the weekly (or seasonal) variations which cause 

high and low peaks in the occupancy levels. These peaks could be affecting the 

comfort/discomfort levels of the occupants, or could render the equipment sizing inadequate. 

 

We will compare later how this average schedule fares on an energy model of Building 101, but 

first we will get to the task of generating richer schedules. 

 

Parameterized Model 

 

We want to find a way to parameterize all the typical daily schedules that are found throughout 

the year in order to reproduce then realistic schedules. A preliminary analysis on the data shows 

that: (1) there is no distinctive “summer” behavior in the sense that the occupancy of the building 

does not drop significantly during the summer months (2) the “day of the week” effect is very 

important, meaning that the fact that the occupancy in the building builds up until Wednesday 

and then it gradually drops until Saturday is present throughout the data (3) weekends are very 

random and with very low occupancy. These three facts suggest us to model each day of the 

week separately, and not to make great efforts to model weekends accurately. 

 

For a typical weekday it becomes rapidly apparent that the schedule will have the characteristics 

of exactly one of four schedules depicted in Figure 15. 

 
 

 

 

Figure 15: Typical Daily Schedules 

 

The three last daily schedules in Figure 15 show two picks surrounding a lunch period happening 

at around 12:30 PM. It is typical too to see a big difference in the number of people before and 

after this lunchtime as the two schedules in the middle show. 

 

A reduced set of parameters describing all of these shapes would allow us to track the schedule 

changes in time (from the data), and to produce Markov Chain models that capture the average 

behavior and the variability of the people occupancy (this procedure will be shown in the next 

section). 

The set of parameters has to be small but sufficient to reconstruct the daily occupancy evolution. 

Functional forms (such as polynomials, trigonometric, and harmonic functions) are not adequate, 

since too many of them are needed to capture with fidelity the “flat ends” that characterize the 
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schedules shown in Figure 15 (and Figure 2, Figure 14). A different approach is to capture a 

small number of points in the shape that are enough to reconstruct the rest of the shape using, for 

example, cubic spline interpolation. A set of five points/parameters sufficient for this task is the 

following: 

 

i. Number of local maxima (either one or two) 

ii. Maxima (either one maxima or two) 

iii. Time at which maxima occurs 

iv. Time of lunch occupancy drop 

v. Impact of lunch break (depth of the “valley”) 

 

Figure 16 shows an example of a shape with two maxima. 
 

 
Figure 16: Typical Daily Schedules 

 

The information used for constructing Figure 16 is the fact that there will be two maxima and the 

points marked with circles, which correspond precisely to the information listed for parameters 

ii. - v. With that information, and using the facts that (1) in average there are no occupants in the 

building before 5:00 AM and after 9:00 PM and (2) the drops from the peaks are usually of 10% 

before the first peak and after the second peak, we can reconstruct the shape using cubic spline 

interpolation. The last two information sets described are marked in the example in Figure 16 

with crosses. 

 

Stochastic Occupancy Schedules 

 

Once we have a way to describe the occupancy evolution for each weekday in the data with a 

small number of parameters, we can track the changes by separating the parameters in bins and 

counting the successive changes through time. 

 

For example, consider the parameter “height of the peaks of Wednesdays”. Figure 17 shows all 

the peak-heights available from the data for the different Wednesdays available as they evolve 

through time from left to right. 
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Figure 17: Wednesday Peak-Heights 

 

Then, as shown in Figure 17, the parameters are classified in 3 “equally populated” bins, which 

define 3 different height levels (or states): low, medium and high. The bins are actually defined 

in such a way to discard outliers and to define equal percentiles. Then we can count from left to 

right the number of times that a peak “transitions” from low to medium, or low to high, and 

every other possible combination for a total of nine. Arranging these transition counts in matrix 

form and normalizing each row, we obtain a transition matrix as defined before. For the example 

in Figure 17 the matrix is the following: 
 

   (
                  
                  
                  

) 

 

Since each bin defines a state with a range of heights associated, then as described in methods 

section knowing the “current” state we can obtain randomly the future state according to the 

transition matrix distribution and once having the state in hand we can draw uniformly a height 

from the corresponding range (bin). 

 

Repeating this procedure for every parameter for each day of the week we obtain all the 

transition matrices needed to simulate the evolution of the schedules through time. The usage of 

3 bins is enough to capture the variability of the processes without overcomplicating the model.  

 

Figure 18 shows a random sample constructed with all the transitions matrices calculated for 

each day of the week. The process is started from the average state for every transition matrix 

calculated as the most likely state in the stationary distribution (see methods section). Figure 18 

shows one of the successive samples. 
 

 
Figure 18: Stochastically Generated Week Schedule 
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It is clear that, since the sampling is random, that even starting from the same initial set of states 

every schedule will be in general different. 

 

Energy Estimation 

 

We compare now the daily whole-building energy consumption predicted by the energy plus 

models using the different types of schedules we have reviewed with actual energy consumption 

measurements reported in the dataset. We include also the “real” schedule that we have available 

from the actual occupancy measures, which is fed into the energy model. We call this last 

schedule the raw schedule. 

 

Figure 19 shows the metered energy reported on the CDH website data as the blue line, the 

simulation with the original step-like occupancy schedules in green, the simulation with the raw 

occupancy data in red (as in Figure 2), the simulation with the average schedule in cyan, and the 

parameterized stochastic Markov Chain model in magenta. The invisible portions of the crude 

step-like schedule simulation (green), the raw data schedule simulation (red), and the average 

schedule simulation (cyan), are hidden due to a heavy overlap with the richer stochastic schedule 

simulation (magenta). 
 

 
Figure 19: Predicted Energy Consumption versus Metered Energy Usage 

 

It is clear that, quantitatively, there is not a big difference in the energy estimations for all the 

simulated models, with maybe the exception of the original step-like occupant schedule. It is also 

clear that the simulations are not matching the reported energy consumptions. Regardless of this 

we will try to see if any of the models can be seen to have fared better in any sense. 
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Comparison Raw Data Schedule 

 

First we try to see if there is a quantitative difference in using the raw data, which should be the 

more precise schedule, versus using one of our proposed simplified schedules. Table 5 shows the 

errors (Euclidean Distance) of the predicted energy yielded by our schedules versus the raw data 

fed directly as a schedule. 
 

 
Step-like Average Stochastic 

Error (Mega Joules) 3759.6 66.7 52.9 

Relative Error 7.1% 0.13% 0.1% 

Table 5: Raw Data Simulation Versus Other Schedules 

 

We see that, if we consider the raw data schedule as the most precise, then the average and fully 

stochastic schedules report significantly less error than the original step-like schedule. This could 

mean that the introduction of sophistication in the schedules is justified. On the other hand, there 

is quantitatively no difference in using the average versus the fully stochastic schedules. 

 

Comparison to Metered Energy 

 

We compare now all four simulated schedules (raw occupancy data, step-like, average, and 

stochastic) to the metered data. 

 

Table 6 shows the errors (Euclidean Distance) of the metered energy versus the predicted energy 

consumptions of each model. 
 

 
Raw Data Step-like Average Stochastic 

Error (Mega Joules) 8935 8150 8940 8939 

Relative Error 17.3% 15.7% 17.3% 17.3% 

Table 6: Metered Data Versus Simulations 

 

As mentioned before, all the models yield unacceptable error levels of the same order of 

magnitude. There are no significant differences in this regard. 

Agent-based model 

 

The agent-based model is still undergoing calibration using field data on occupant behavior that 

is being collected through January 31, 2014, the due date of this draft report. Future research will 

ask how well the agent-based model calibrates to observed occupant behavior, how the 

EnergyPlus model performs when hot-linked to the agent-based model (compared to observed 

energy consumption), and how agent-based model/EnergyPlus combo calibrates to reported 

occupant comfort and satisfaction data.  
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The calibration of the occupant behavior model of Building 101 will proceed in two steps. First, 

the measured annual energy consumption in kBtu/sq.ft/year will be compared with the modeled 

energy use in kBtu/sq.ft/year, yielding a % error calculation. Second, the fieldwork results on 

occupants’ response towards the building environment, will be compared with the modeled 

occupant behavior to provide a basis for estimating % error in behavioral factors. To test the 

validity of the modeled Building 101, sensitivity runs will be made for the building.  

 

Comparison across models  

As future research, it will be worthwhile to compare observed energy consumption, reported 

occupant comfort and satisfaction, results from the EnergyPlus model developed by Xu 

(2012),the Markov chain model, and the Agent-based model.  

 

 

4. Discussion 
 

Xu (2012) identifies several shortcomings of the conventional EnergyPlus model of Building 

101. It mis-predicts central HVAC system energy consumption, mis-predicts plug loads, and the 

assumed occupancy schedules are not accurate.  

 

The schedules obtained by the Markovian 5-Parameter Model seem visually realistic. The 

methodology here exposed could be used to simulate, in an at least qualitatively correct way, 

other random processes to capture variations in time. 

  

Additionally, if the building model is not too sensitive to changes in occupancy which could be 

due to calibration or the fact that for commercial buildings most of the energy consumption 

comes from big stationary equipment, then it is possible that changing the schedule to a more 

sophisticated one will not make an improvement on the energy consumption estimations at least 

in comparison with the reported metered consumption. If the model is sensitive enough, then the 

average schedule and the stochastic schedule fare very similar to the actual occupancy data 

schedule. 

  

The assertion that realistic stochastic schedules (which include variations) are better than 

averaged schedules or better than step-like schedules is at this point questionable. 

 

The Markovian analysis provides little evidence of seasonality in building occupancy. This work 

demonstrates that a parsimonious version of Markov chain modeling is feasible in this domain.  

 

Regarding occupants’ adaptive responses, we expect future research to show that modeling it 

using agent-based techniques does not help predict energy consumption in this building. We 

expect that it will provide good basis for predicting occupant comfort, satisfaction, and 

maladaptive responses that will need attention from building manager.  

 

We note two limits of this research that extend beyond its incomplete status. First, other 

buildings might perform differently than the retrofitted commercial building modeled here 

(especially residential buildings where occupant behavior matters more). Second, the current 



Incorporating occupant behavior into energy models January 2014 

 

32 

research does not include attempts to influence occupant behavior (e.g., Energy Chickens, 

dashboards, 3-net leases), although the modeling framework supports these possibilities once 

data become available.  

 

 

5. Conclusions 
 

We offer the following tentative conclusions based on work completed to date: 

 Better occupancy data greatly improves energy model accuracy 

 Standard assumptions about occupant schedules are often wrong so that a more 

sophisticated representation is warranted 

 Better data about occupants’ adaptive responses only marginally improves energy model 

accuracy 

 Yet such data are quite valuable for predicting occupant satisfaction 

 EnergyPlus needs additional hooks for incorporating occupant behavior. 
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