Edward J. Bloustein School of Planning and Public Policy

Center for Energy, Economic and Environmental Policy (CEEEP) http://ceeep.rutgers.edu/

One-Day Workshop

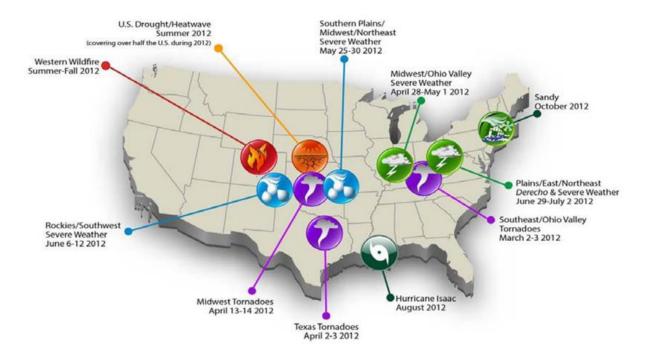
Analyzing the Costs and Benefits of Electric Utility Hardening Efforts in Response to Severe Weather

Oct 21, 2014

Utility Hardening:

Economic Efficiency and Cost-Benefit Analysis (CBA)

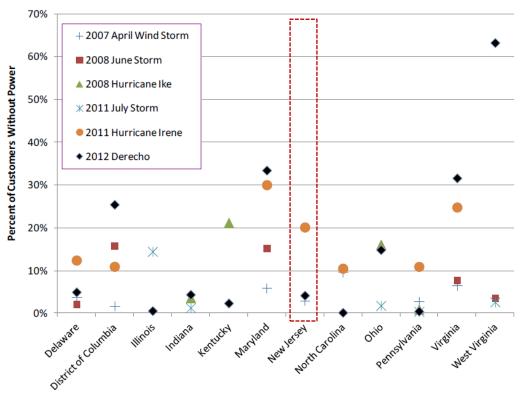
- Integration of CBA with reliability and resiliency analysis
- Dealing with uncertainties during CBA
- Examples of CBA of hardening options
- Data collection challenges and issues


Role of Models

Models do not completely mimic the world, that is why they are called models

□ All models are wrong, some are useful

□ If you want to know what to do, ask your mother


The United States suffered eleven numbers of billion-dollar weather disasters in 2012

Source: National Oceanic and Atmospheric Administration (NOAA)

Between 2003 and 2012, roughly <u>679 power outages</u>, each affecting at least 50,000 customers, occurred due to weather events (U.S. DOE)

The State of New Jersey has witnessed some of the worst storms in the last few years

Source: OE/ISER Situation Reports and Energy Assurance Daily, A Review of Power Outages and Restoration Following the June 2012 Derecho – U.S. DOE, August 2012

New Jersey electric customers were severely impacted by Hurricane Irene and Superstorm Sandy (U.S. DOE)

The New Jersey Board of Public Utilities asked GE Energy Consulting to assist in reviewing selected areas related to electric distribution hardening

Scope of Work

- Identify and recommend storm hardening initiatives deserving consideration by the New Jersey Electric Distribution Companies (EDCs)
- Evaluate the costs and benefits of implementing various hardening measures by the EDCs
- Perform a review of the submissions by the EDC relating to their Smart Grid and Distribution Automation pilots and plans

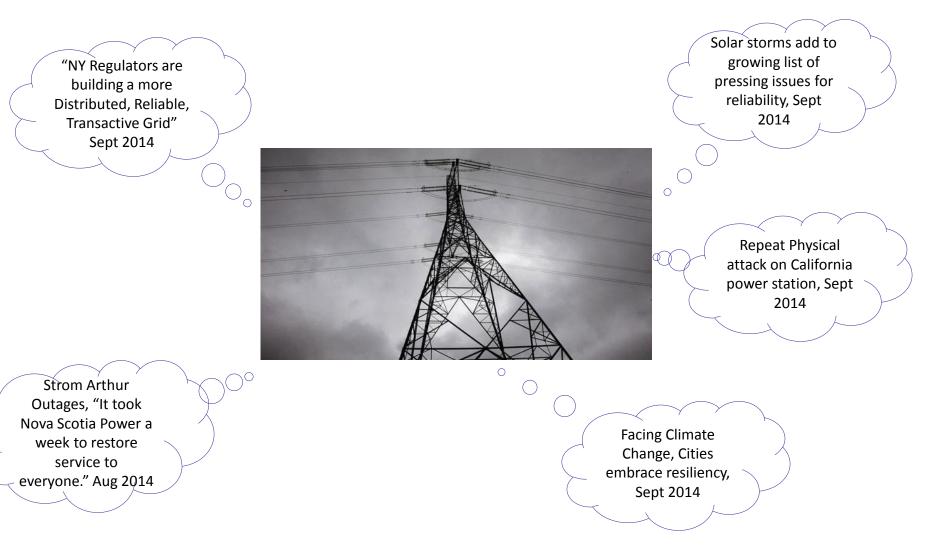
Key recommendations proposed by GE Energy Consulting in its final presentation to the BPU on Oct 20, 2014

Event Reporting

 Enhance reporting requirements to enable comparative and quantitative assessment and scorecard-based performance assessments

Distribution Hardening

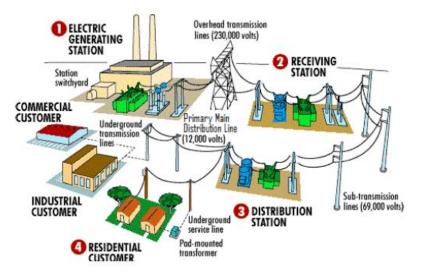
- Predict associated damage, number of customer interruptions, and restoration time by danger tree
- Segment customers by restoration priority
- Communicate estimates to ratepayers and provide convenient mechanisms for customers to report danger trees (e.g. via twitter feeds)
- Selectively underground most critical feeders and tap lines
- Determine the most cost-effective inspection cycle/method
- Upgrade construction near coast; design for extreme loading
- Insert steel/concrete structures in long straight wood circuits


Substation Hardening

- Add elevation attributes to flood-prone assets and report
- Perform limited failure modes and effects analysis (FMEA)
- FMEA findings, estimate and report hardening costs
- Estimate and report costs of inspection; adjust cycles
- Identify critical communication facilities; estimate hardening costs
- Require quick deployment of mobile subs and backup generators

Smart Grid & Distribution Automation

- Mandate standard EDC SGDAP reporting
- Asses/implement most impactful SG-DA technologies
- Deploy SG-DA technology selectively
- Mandate storm recovery reporting
- Require EDCs to evaluate damage prediction tools
- Assess the value and feasibility of DG and Microgrids


Questions surrounding the reliability of the grid:

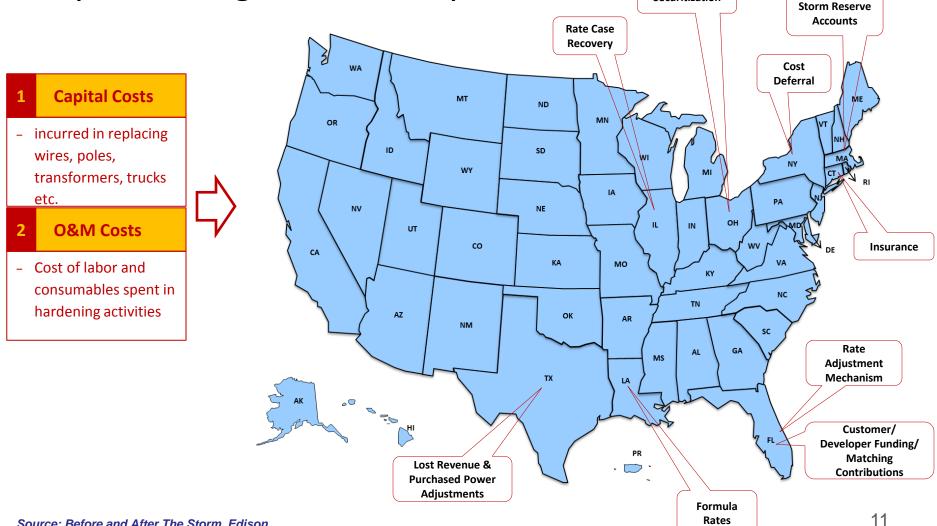
Electric Grid Reliability and Resiliency: in the context of severe weather

- What is an acceptable level of reliability and resiliency in a severe weather event condition?
- What is an acceptable level of investment by the utilities which can ensure that they are able to 'weather the storm'?
- Should utilities be incentivized for their ability (by corollary be penalized for their inability) to improve reliability and harden the grid?
- What are the top 5 / top 10 actions or measures that can achieve maximum impact?

Utility expenses are proposed along the value chain – most notably at the distribution level

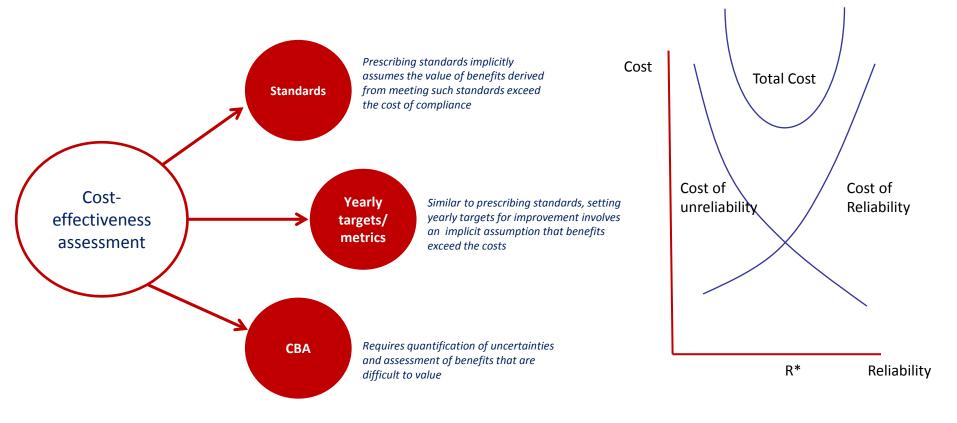
Source: SRP

Hardening Activities


- Wind Protection
 - Upgrading damaged poles and structures
 - Strengthening poles with guy wires
 - Burying power lines underground
- Flood Protection
 - Elevating substations/ Control rooms
 - Relocating/ constructing new lines and facilities
- Modernization
 - Installing asset tools and databases
 - Deploying sensors and control technology

Year-Round Readiness Efforts

- Managing vegetation
- **Complying with inspection protocols**
- □ Procuring spare T&D equipment
- D Purchasing or leasing mobile transformers & substations
- □ Conducting hurricane preparedness planning & training


Source: Hardening and Resiliency U.S. Energy Industry Response to Recent 10 Hurricanes Seasons, DOE, August 2010

Regulators have adopted different approaches for approving utility hardening cost recovery

Source: Before and After The Storm, Edison Electric Institute, March 2014

Policy makers and regulators have to deal with the difficult task of evaluating cost-effectiveness of utility hardening investments

=> Cost effectiveness does not mean efficient

Key considerations before assessing cost-effectiveness

Policy Considerations

- How to measure reliability and resiliency?
- What should be the hierarchy of planning documents for efforts to increase reliability and resiliency?
- How does changes in business environment (microgrid, increased penetration of RE) changes need for reliability and resiliency planning?

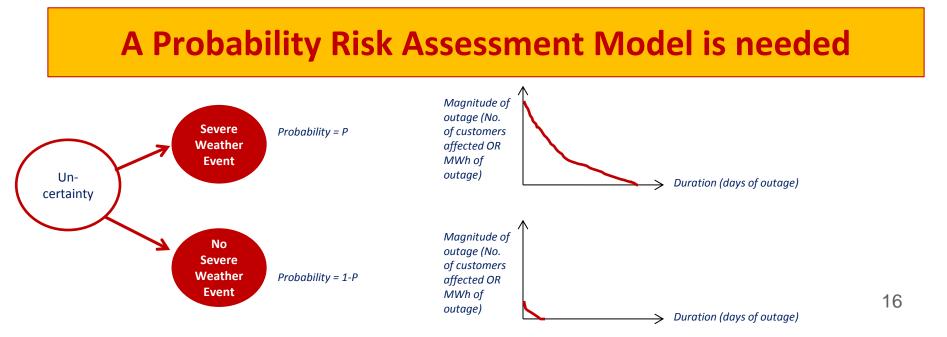
Governance Considerations

- Who is responsible for advocating standards for reliability and resiliency?
- Who is responsible for maintaining reliability and resiliency (especially when large-scale events disrupt interdependent infrastructure)?
- Who is responsible for monitoring reliability and resiliency?

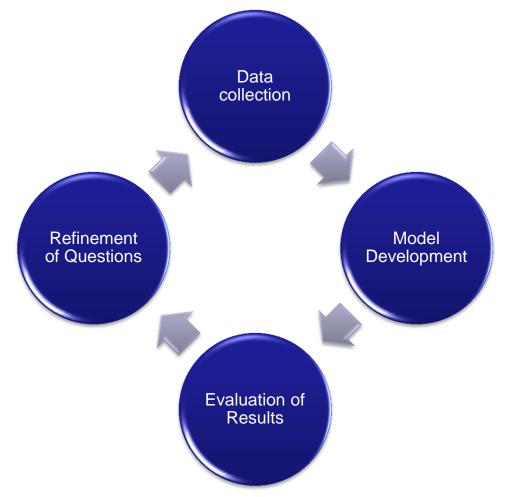
Economic Considerations

- What is the optimal cost for maintaining reliability and resiliency at the desired level?
- Who pays for such costs?
- How to avoid/ minimize cost shifting among ratepayers?
- How to measure benefits (individual and society) from investments in increasing and maintaining reliability?

Cost-benefit analysis (CBA)


- Cost-benefit analysis should be informative not dispositive
- Policy goals should be explicitly decided not implicitly through which cost-benefit results to use
- Cost-benefit analysis provides insights throughout program design and implementation not just a number to justify past decisions
- Cost-benefit analysis can as easily obscure issues as it can enlightened them
- => Easy to use and easy to misuse

Why Cost-Benefit Analysis of utility hardening measures is a hard problem?


- Formally, it involves <u>decision-making under uncertainty</u> involving low probability, high consequence events
- Standard heuristics that we use do not apply and in fact can lead to poor decisions when applied to these types of decisions
- Data and models are evolving and incomplete
- Understandably, there is public and political calls for <u>immediate</u> <u>action</u> – and much can be done right away – but analysis of the efficacy of costly options is a challenging undertaking
- CBA assumes all <u>benefits can be quantified</u> such as aesthetics value to a community as a result of undergrounding
- Hardening measures may interact in complex and unforeseen ways

Why Cost-benefit analysis of utility hardening measures is a hard problem? (Con't)

- The quantification of benefits of any proposed response requires determining the probability, magnitude, and duration of the electricity outages that were avoided due to that response
- Different responses will have different impacts on the probability, magnitude and duration of outages

Data and models needed for a long-term CBA is an iterative process

- Data collection
 - Before storm
 - During storm
 - □ After storm
- Continuous loop of data analysis and feedback, back to data collection stage

CBA becomes complex because the "uncertainty itself is uncertain"

- The probabilities, magnitudes and durations of the initiating events (i.e., severe weather) are themselves uncertain
- Overtime (many years), with more data collection, these uncertainties can be updated with new information
- □ Aleatory vs. epistemic

The costs and benefits of specific hardening efforts can be utility specific and circuit specific within a utility

Some examples

- Undergrounding
- Vegetation management
- Backup power/distributed generation
- Hardening distribution facilities
- Moving substations
- Redundancy of key facilities
- Having accurate data sets and models involves communication and coordination between the BPU, EDCs, and stakeholders within a regulatory framework

Utility Hardening: Economic Efficiency and CBA

- Integration of CBA with reliability and resiliency analysis
- Dealing with uncertainties during CBA
- Examples of CBA of hardening options
- Data collection challenges and issues

Quantification of benefits is complex

VOLL

for a customer who faces outage

DURATION

of outage

MAGNITUDE

of severe weather event

FREQUENCY

of severe weather event

NJ Storm Events Database Compilation

A. Main sources used by CEEEP for initial database creation

- National Oceanic and Atmospheric Administration (NOAA) Storm Events Database
 - Used as a starting point for fields of data to be collected (date, event details, storm 'type', wind speed, precipitation, and number of outages)
- Bayshore Regional Watershed Council: New Jersey's Most Notable Storms Website
 - Listed mainly hurricanes and tropical storms to effect NJ; used as a guideline for investigating information on larger storms

The website has since been revised and the data that was collected originally is no longer available.

- > **NOAA Miami Regional Library**: Monthly Weather Review
 - Database with monthly details of storms; provided additional details for most noteworthy storms

NJ Storm Events Database Compilation

B. Limiting Factors

- Use of available electronic resources
 - Events in the database were found through: NOAA, Bayshore Regional Storm events and subsequent outage reporting were found through online databases and archives – thus our own knowledge and findings are limited to the capacity in which these events were recorded.
- Timeline of recorded events
 - We found power outages were reported in more detail since 1980; prior decades have significantly less reports available online or at all.
 - The NOAA Storm Events Database, which provided data for a great number of the events included is limited to the years 1996-2013, and thus skews the data set to show more events in this time period. Thus, we cannot comment on any frequency of events over the entire time period included.

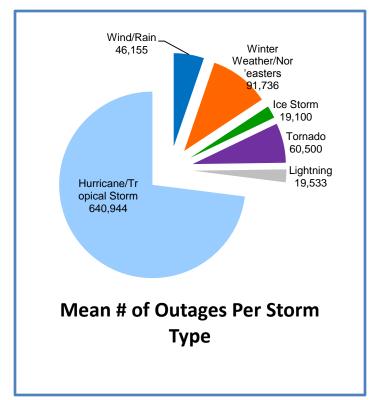
CEEEP's initial efforts need to be reviewed by appropriate subject matter experts for completeness and proper interpretation 23

NJ Storm Events Database Compilation

C. Terminology (1/2)

- Storms classified into one of 6 categories: Wind/Rain, Winter Weather/Nor'easter, Tornado, Ice Storm, Lightning, Tropical Storms/Hurricanes.
 - Storms were either classified by NOAA or details provided through other electronic sources gave a narrative perspective of each storm that generally included indicators such as wind speeds, precipitation type, as well as other factors.
 - From the data sorted by storm type, the total number of events were tallied, along with the total number of customers that were reported to have lost power for that event type.

NJ Storm Events Database Compilation


C. Terminology (2/2)

- All of the outages reported are sustained¹ outages.
- Events collected were 1000 or more outages per a weather event.
- "Large-scale" events are labelled as 100,000 or more outages per a weather event.

¹Sustained outages are characterized by Richard Campbell as "sustained duration outages lasting longer than five minutes (and extending to hours or days) " (Campbell 3)

Outages refer to outage for a meter and not for a customer

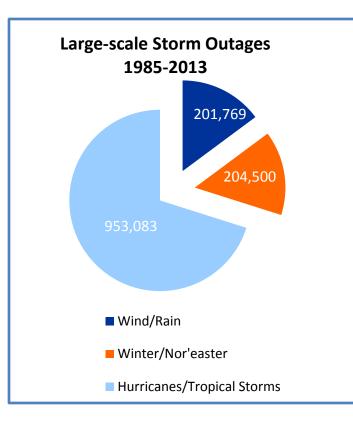
A. Breakdown of Storm Event "Types" and their respective Mean Outages (1985 – 2013)

	# of Total	# of Cumulative Affected	% of reported	Mean size of customer
	Events	Customers events		outages
Wind/Rain	96	4,430,900	67.1	46,155
Winter Weather/Nor'easters	pr'easters 22		15.4	91,736
Ice Storm	5	95,500	3.5	19,100
Tornado	2	121,000	1.4	60,500
Lightning	9	175,800	6.3	19,533
Hurricane/Tropical Storm	9	5,768,500	6.3	640,944
Totals	143	12,609,900		

Table 1: Database storm event totals and proportion of storm types/mean outages; from CEEEP Storm Events Database)


Data and Findings

B. Breakdown of Storm Event "Types" and their respective Mean Outages (1985 – 2013)


All Storms – Outages: 1985 - 1995			All Storms – Outages: 1996 - 2013		
Storm Type	Total # of Storms	Total # Outages	Storm Type	Total # of Storms	Total # Outages
Hurricane/ Tropical Storm	2	277,000	Hurricane/ Tropical Storm	7	5,491,500
Winter Weather/ Nor'easter	2	140,000	Winter Weather/ Nor'easter	20	1,878,200
Wind/Rain	Not Reported	Not Reported	Wind/Rain	96	4,430,900
Ice Storm	Not Reported	Not Reported	Ice Storm	5	95,500
Tornado	Not Reported	Not Reported	Tornado	2	121,000
Lightning	Not Reported	Not Reported	Lightning	9	175,800
Total	4	417,000	Total	139	12,192,900

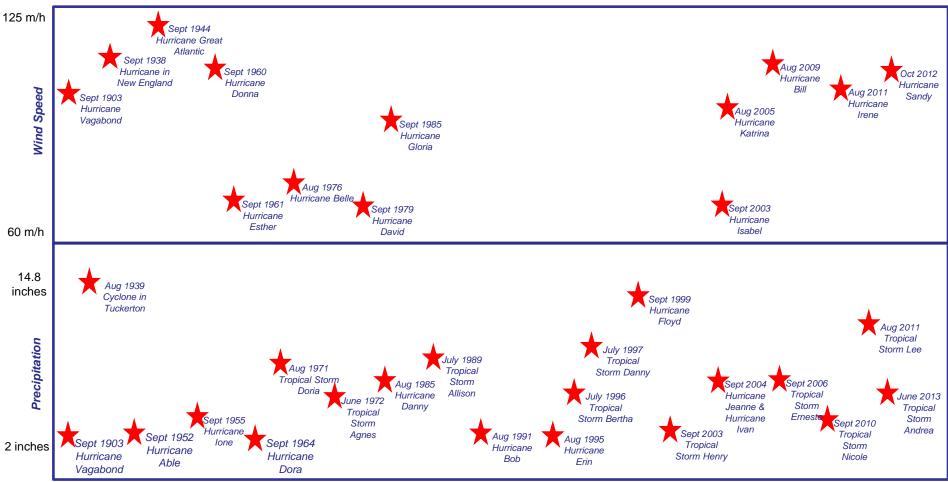
No consistent data available over long period in the way that storms have been reported. The reporting of outages for more types of storms is apparent in these two year brackets.

C. "Large-scale" events 1985 – 2013: 100,000 + outages reported per event

D. "Large-scale Storms" 1985 – 2013: 100,000 + outages reported per event

	# of Large- scale Storms	# of Cumulative Affected Customers	% of Major events	Mean size of customer outages
Wind/Rain	13	2,623,000	48.2	201,769
Winter Weather/Nor'easters	8	1,636,000	29.6	204,500
Hurricane/Tropical Storm	6	5,718,500	22.2	953,083
Totals	27	9,977,500		

Table 2: "Large-scale" Storms and their outages (by totals, proportion, and mean outages); from CEEEP Storm Events Database)

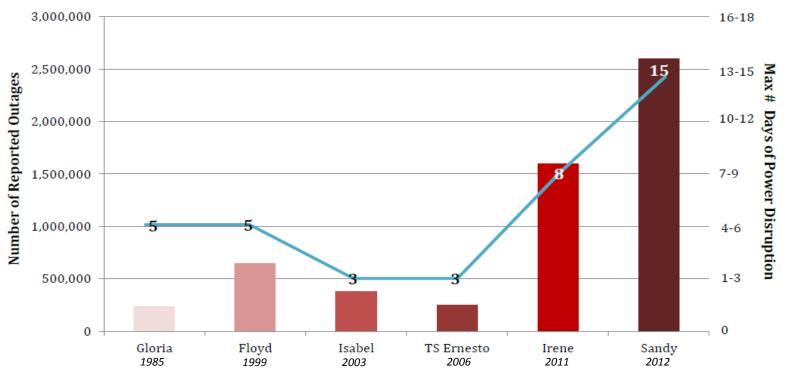

- E. Hurricanes/ Tropical Storms in NJ
- Despite accounting for only a relatively small percentage of the types of weather-related events that have caused power outages in the state since 1985, hurricanes and tropical storms show a considerable number of mean customer outages (as seen in the previous charts).
- Using data retrieved from the Bayshore Regional Watershed Council online resource entitled "List of New Jersey's Most Notable Storms" and additional online sources*, we have cited <u>36 hurricanes and tropical storms</u> that have affected New Jersey in various capacities – as remnants of the storm to high levels of precipitation and winds - <u>since 1985 to present day</u>, an average of 1.3 hurricanes or tropical storms per year over that span of time.

*Number based on data/observations by Bayshore Regional Watershed Council up to 2007, along with United States National Oceanic and Atmospheric Administration's National Weather Service, National Climatic Data Center, and the National Weather Service Weather Prediction Center.

- F. Hurricanes/ Tropical Storms in NJ
- While some of these 36 hurricanes/tropical storms reported minor electricity distribution impact including little to no major power loss to customers our database compilation included <u>9 total with reported power outages at 1000 or more</u>, and classified <u>6 as "large-scale" with over 100,000 outages (many of the 6 exceeding this number).</u>
- Thus major hurricanes/tropical storms average at .21 per year over the 28 year span of 1985-2013.
- These 6 major storms accounted for an estimated total of 5,717,800 reported outages over the course of 1985-2013, averaging to 952,966 outages per storm.

Data and Findings

G. Hurricanes/ Tropical Storms in Northeast region



H. Comparing Hurricanes/ Tropical Storms Outages and Duration

Major Hurricanes and Tropical Storms in NJ

Storms Outages and Duration of Outages

Predictions of future severe weather from other studies

 WRF control simulation 2012
 Observed 2012 (National Hurricane Center (NHC))
 WRF simulation 2050

Figure 14. Comparison of observed (2012), modelled (2012) and simulated 2050 track of Superstorm Sandy (Base map: © 2014 OpenStreetMap Data CC-By-SA)

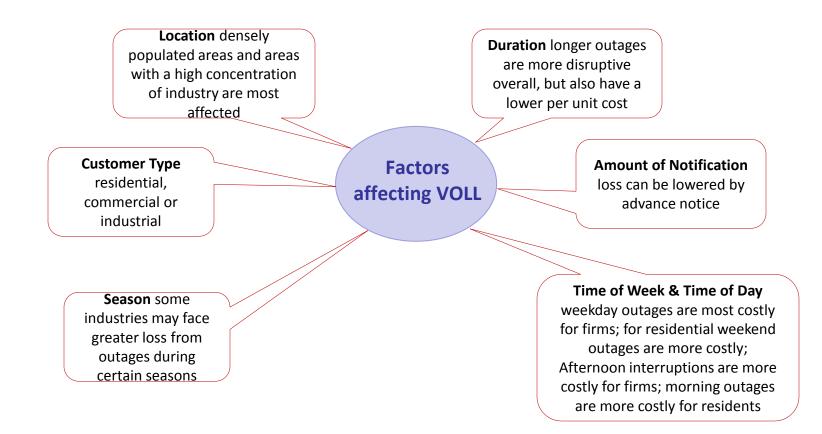
Source: DNV GL: Adaptation to a changing climate, Hovik, 2014

VOLL (Value of

Lost Load)

What is the 'Value' of uninterrupted and quality power supply to a consumer?

"the value an average consumer puts on an unsupplied MWh of energy" (Cramton and Lien, 2000)


- 'reliability worth', 'willingness to pay/accept', 'value of electric service'
- \$1 bn, voltage disturbance blakouts of 1996 in California (Douglas, 2000)
- \$6 bn, 2003 US Northeast blackout (Graves and Wood, 2003)
- VOLL entire economy in US (2007)\$/kWh (Welle and Zwaan, 2007)
 - » Developed Countries 4 to 40
 - » Developing Countries 1 to 10

Estimate of Total VOLL Value PSE&G System-Wide Hypothetical 1 Day Outage					
Customer Class	Number of Customers	Unserved kWhs	VOLL (\$ per Unserved kWh)		Total VOLL
Residential	1,871,700	37,106,134		\$0.92	\$34,107,816
Commercial	273,499	64,487,493		\$49.17	\$3,170,909,519
Industrial	9,219	11,564,795		\$11.29	\$130,581,186
TOTAL	2,154,418	113,158,422		\$29.48	\$3,335,598,521

Source: Analysis of Benefits: PSE&G's Energy Strong Program, The Brattle Group, Oct 7, 2013

There exists no market for interruptions of energy supply – quantifying VOLL remains a challenge

VOLL depends upon various factors notably the type of facility

What methodologies can be adopted to quantify VOLL?

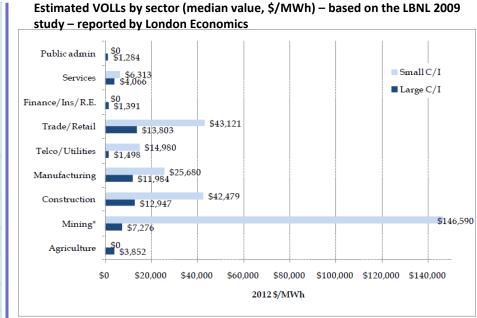
Approach	Description	Strength	Weakness
Revealed preference (market behavior)	Use of surveys to determine expenditures customers incur to ensure reliable generation (i.e., back-up generators and interruptible contracts) to estimate VOLL	•Uses actual customer data that is generally reliable	 Only relevant if customers actually invest in back-up generation Limited consideration of duration and/or timing of outages Difficult for residential customers to quantify expenses
Stated choice (contingent valuation and conjoint analysis)	Use of surveys and interviews to infer a customer's willingness-to- pay, willingness-to-accept and trade-off preferences	 More directly incorporates customer preferences Includes some indirect costs Considers duration and/or timing of outages 	 Experiment and survey design is time- consuming and effort intensive Need to manage for potential biases Residential customers may give unreliable answers due to lack of experience
Macroeconomic (production function)	Uses macroeconomic data and other observable expenditures to estimate VOLL (e.g. GDP/electric consumption)	 Few variables Easy to obtain data GDP reasonable proxy for business VOLL 	 Does not consider linkages between sectors, productive activities Proxies for cost of residential outages may be arbitrary or bias
Case Study	Examines actual outages to determine VOLL	 Uses actual, generally reliable data 	 Costly to gather data Available case studies may not be representative of other outages/ jurisdictions

Rutgers

Outage costs studies are not new and have been attempted

after major blackout events

	Cost of the New York City blackout - 1977									
Impact Areas	Direct Costs (\$M)		Indirect Costs (\$M)							
Business	Food Spoilage Wages Lost Securities Industry Banking Industry	1.0 5.0 15.0 13.0	Small Businesses Private Emergency Aid	155.4 5.0						
Government			Federal Assistance Programs New York Assistance Programs	11.5 1.0						
Consolidated Edison	Restoration Costs Overtime Payments	10.0 2.0	New Capital Equipment	65.0						
Insurance			Federal Crime Insurance Fire Insurance Private Property Insurance	3.5 19.5 10.5						
Public Health Services			Public Hospitals – Overtime, Emergency Room Charges	1.5						
Other Public Service	MTA – Revenue Losses MTA – Overtime and Labor	2.6 6.5	MTA Vandalism MTA Capital Equipment Red Cross Fire Department Police Department State Courts Prosecution and Correction	0.2 11.0 0.01 0.5 4.4 0.5 1.1						
Westchester County	Equipment Damage Overtime Payments	0.25 0.19								
TOTAL		\$55.54		\$290.16						

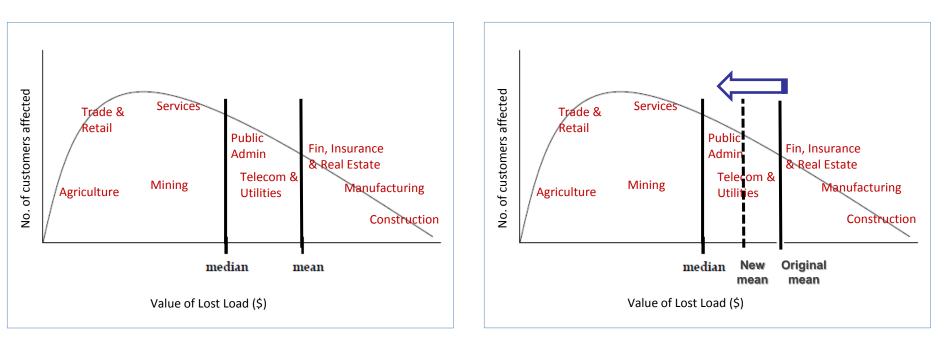

Source: Electrical Power Interruption Cost, Estimates for Individual Industries, Sectors, and U.S. Economy, PNNL, 2002

TGERS

More recent estimates of VOLL from various national and regional studies

Costs per Avg. kV 1 hour interrupti Medium & Large (2008\$)	on for	Costs per Avg. kW hour interruption Medium & Large ((2008\$)	Costs per event – 1 hour interruption duration Medium & Large C&I				
Interruption Characteristics	Mean (Ratio)			(Summer Weekday Afternoon)			
<u>Season</u>							
Winter	\$13.8	Interruption Characteristics	Mean (Ratio)				
Summer	\$22.8	Industry	())				
<u>Day</u>		Agriculture	\$43.6	\$8,049			
Weekend	\$30.6	Mining	\$7.6	\$16,366			
Weekday	\$21.4	Construction	\$62.9	\$46,733			
<u>Region</u>		Manufacturing	\$22.0	\$37,238			
Midwest	\$19.8			. ,			
Northwest	\$19.9	Telco. & Utilities	\$19.0	\$20,015			
		Trade & Retail	\$34.2	\$13,025			
Southeast	\$18.2	Fin., Ins. & RE	\$32.7	\$30,834			
Southwest	\$37.0	Services	\$18.7	\$14,793			
West	\$28.5	Public Admin	\$14.8	\$16,601			

Source: Estimated Value of Service Reliability for Electric Utility Customers in the United States, Lawrence Berkeley National Laboratory (LBNL), 2009



Source: Estimating the Value of Lost Load, London Economics, 2013

Caveats:

- LBNL does not report median VOLL
- LBNL does **not** report NJ specific or Northeast specific VOLL •
- London Economics does not study NJ specific or Northeast specific VOLL
- London Economics quotes a 2003 Northeast specific study by ICF ("The Economic Cost of the Blackout" which uses an assumed VOLL (as a multiple of retail electricity price) to calculate total economic cost of outage

VOLL also depends upon whether any existing backup arrangements are present

Source:

- Estimated Value of Service Reliability for Electric Utility Customers in the United States, Lawrence Berkeley National Laboratory, 2009
- Estimating the Value of Lost Load, London Economics, 2013

Possibly customers with high VOLL shall have some back up arrangements; thereby shifting the mean towards left

Cost of interruptions calculation using U.S. DOE "Interruption Cost Estimate Calculator"

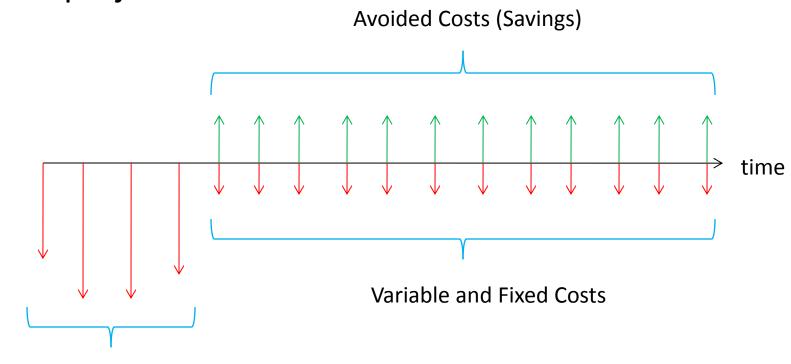
		Name of Utility	Results	
	1727 Statements		No. of Customers	483,508
ICECalculator.com Interruption Cost Estimate Calculator	ENERGY	ACE, NJ	Total Cost of Sustained Interruptions (2011\$)	\$171,476,718
			Cost per Unserved kWh (2011\$)	\$39.4
Estimate Interrup This module provides estimates of cost per interruption event, p cost of sustained electric power interruptions.			No. of Customers	969,179
Reliability Inputs	Choose 1 or More States Based on your state selection, default inputs are calculated. The next page will list all of these default	JCP&L, NJ	Total Cost of Sustained Interruptions (2011\$)	\$147,771,603
Please enter SAIDI or CAIDI (in minutes):	inputs and provide an opportunity to change any of them.		Cost per Unserved kWh (2011\$)	\$37.5
SAIDI CAIDI	Alaska Arizona Arkansas California		No. of Customers	1,998,822
Number of Customers Non-Residential	Colorado Connecticut Delavara District of Columbia Florida	PSE&G, NJ	Total Cost of Sustained Interruptions (2011\$)	\$183,709,186
Residential	Georgia Hawaii Use Ctri key to choose more than 1 state		Cost per Unserved kWh (2011\$)	\$42.6
Go		ind by test	No. of Customers	133,400
	boratory and Department of Energy. Developed by Freeman, Sullivan & (shvologies, policies and projects transforming the electric power industry on SmartOrds p Copyright 2	RECO. NJ	Total Cost of Sustained Interruptions (2011\$)	\$107,943,705
			Cost per Unserved kWh (2011\$)	\$59.4

Results for NJ utilities using utility-specific reliability & customer data and DOE's Interruption Cost Estimate Calculator

Utility Hardening: Economic Efficiency and CBA

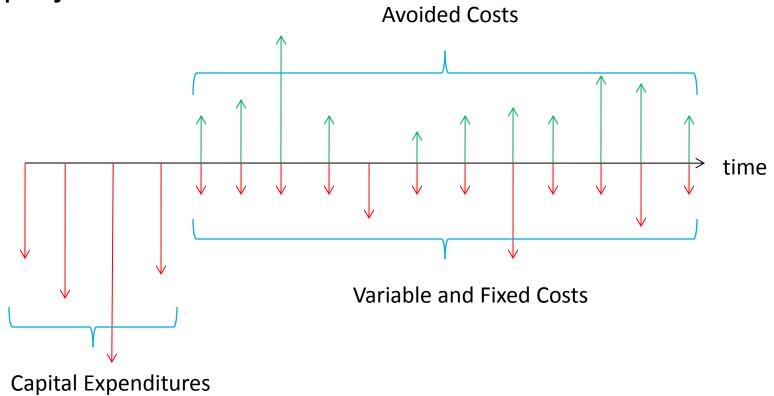
- Integration of CBA with reliability and resiliency analysis
- Dealing with uncertainties during CBA
- Examples of CBA of hardening options
- Data collection challenges and issues

Expressing the results of cost-benefit analysis


- Benefit/Cost Ratio
- Cost/Benefit Ratio
- Net Present Value (NPV)
- □ Internal Rate of Return (IRR not commonly used in this context)
- Absolute vs. relative metrics

Net Benefits (Difference)	Net Benefits _a (dollars)	=	$NPV \sum benefits_a \ (dollars) \text{ - } NPV \sum costs_a \ (dollars)$
Benefit-Cost Ratio	Benefit-Cost Ratio _a	=	$\frac{\text{NPV} \sum \text{benefits}_a \text{ (dollars)}}{\text{NPV} \sum \text{costs}_a \text{ (dollars)}}$

Source: California Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects, 1983


Assumed project cash flows

Capital Expenditures

- Given the time value of money, do the future revenues exceed the immediate capital expenditures and on-going costs?
- Need to be consistent in comparing costs and benefits (in the context of attribution)
 - □ Incremental costs vs. incremental benefits
 - □ Total costs vs. total benefits

Actual project cash flows

- □ How to address uncertainty?
- Different benefits and costs have different levels of uncertainty

Importance of the discount rate

- The discount rate is an important determinate of the results
- The discount rate consists of two aspects:
 - Impatience
 - Non-diversifiable risk
- A lower discount rate makes investments more attractive; a higher discount rate makes them less attractive

$$NPV = \sum_{t=0}^{n} \frac{(Benefits - Costs)_{t}}{(1 + r)^{t}}$$
where:
r = discount rate
t = year
n = analytic horizon (in years)

Cost-effectiveness analysis centers around five major perspectives

SOCIETY 5

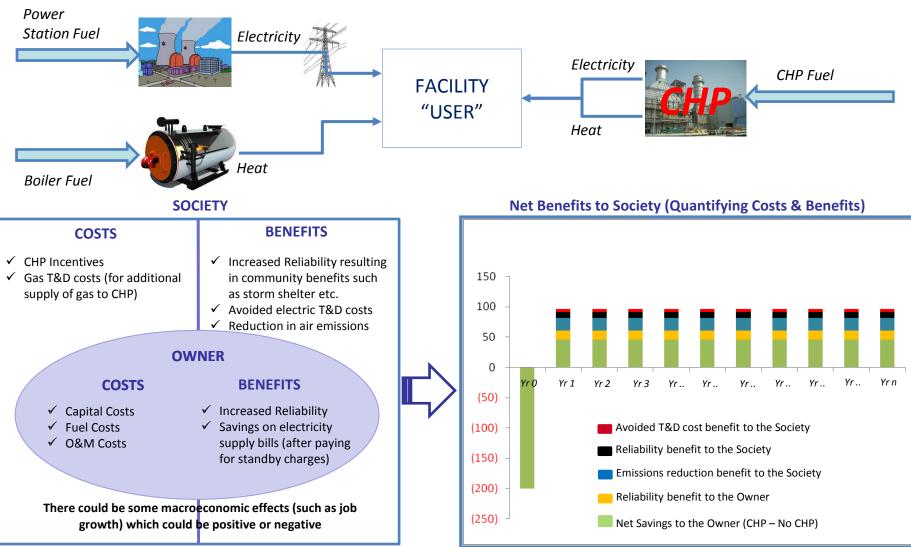
PARTICIPANT

2

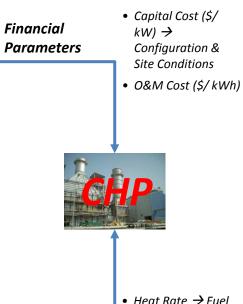
3

RATE

PAYER


UTILITY

1


PARTICIPANT 4 + RATE PAYER + UTILITY

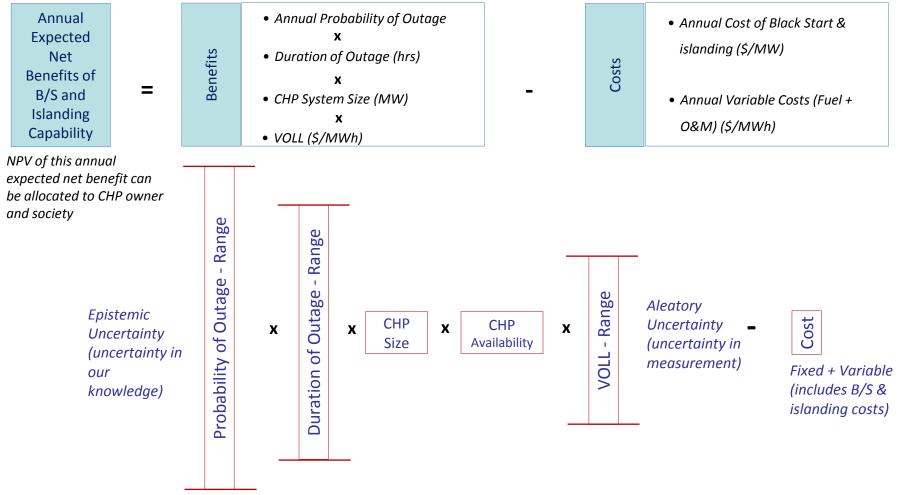
CAP

Conceptualizing Costs & Benefits of a CHP

Key inputs into the CBA Model – Financial and Technical depending upon CHP plant configuration (1/5)

- Technical Parameters
- Heat Rate → Fuel Usage (MMBtu/kWh)

• Thermal Energy Output (MMBtu/hr)

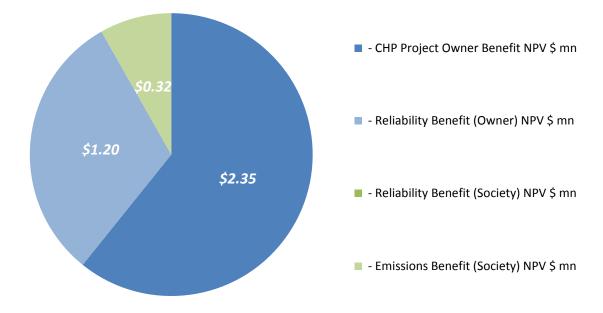

-	🔏 Cut	Page Layout Formu	A Ă	= = =		Wrap Tex		General					-	× """	Σ AutoSur	n - A	æ
] iste	Сору						-				nal Format	Cell	Insert Del		🕘 Fill 😁	" 27	Find &
-	💞 Format Painter	B Z U - ⊡ - 🖄	· A ·			Merge &	Center *	\$ - %	, 00 ≥.0		g ≠ as Table		insen Dei		🖉 Clear 🛪		Select *
	Clipboard G	Font	Gi I		Alignme	nt	Gi	Numb	ier G		Styles		Ce	lls		Editing	
	K18	• (• f _*															
A E	з С	D	E	F	G	н	1	J	K	L	М	N	0	P	Q	B	s
S. 0.	N CHP Technology	Specification	Electric Capacity (K¥)	Electric Heat Rate (Btułk¥h)	2		Thermal Energy Output	3		Total Installed Costs	4		O&M Costs (\$/k∀h)	5			
				ICF	SENTECH,	EPA CHP	(MMBtu/hr	SENTECH,	EPA CHP	(\$/KV) ICF	SENTECH,	EPA CHP	ICF	SENTECH,	EPA CHP		
				Internation al. Inc.	Incorporat ed	Catalog	Internation al, Inc.	Incorporat ed	Catalog	Internation al, Inc. @	Incorporat ed *	Catalog #	Internation al, Inc. @	Incorporat ed *	Catalog #		
				OHF Falier	CHI CHF	<i>us</i>	OHF Falier	CAI ONF	<i>US</i>	OHF Faller	Chi CHF	us	CHF Falier	CAL CHP	85		
				Analysis and 2011-2030	Technology Cast and	Environment al	Analysis and 2011-2030	To chaningy Cart and	Environment al	Analysis and 2011-2030	To chanlagy Cart and	Environment al	Analysis and 2011-2030	To chaningy Cast and	Environment al		
				Harket	Forfarmone o Data	Protection Agency	Harket Accormont	Forformenc + Boto	Fratectian Accesy	Herket Arrorment	Parlamanc o Data	Fratection Access	Herket Arrestment	Porturmone o Data	Protection Agency		
				Report, Fab. 2012 (Inc	Analysis far Eld, June	Cumbined Heat and	Royart, Fab. 2012 (Inc	Analysis far Eld, June	Combined Heat and	Roymet, Fab. 2012 (Inc	Analysis Ins ElA, June	Combined Heat and	Roymet, Fab. 2012 (Inc	Analysis Inc ElA, June	Cambined Rest and		
				Colifornio	2010 (Int	Fauer	Colifmenio	2010 (/ar	Fauer	Colifornio	2010 (/m	Fauer	Colifornia	2010 (Inc	Fauer		
1	Reciprocating								- tota condition								
1.a		Small - Rich Burn with 3 way catalyst	100 KW	12,637		12,000	0.67		0.61	2,750		2,210	0.0220		0.0220		
1b		Gas Reciprocating Engine	300 KW			9,866			2.16			1,940			0.0160		
1.0		Diesel Reciprocating Engine	300 KW		9,618			0.00			850			0.0148			
1.d		Diesel Reciprocating Engine (equipped with SCR for Nox control and DPF for PM control)	300 KW		10,124			1.20			1,804			0.0211			
1.e		Gas Reciprocating Engine	334 KW		11,494			2.02			1,800			0.0295			
1f 1g		Small - Lean Burn Gas Reciprocating Engine	800 KW	9,760	9.097	9,760	3.44	3.92	4.30	1,900	1.600	1,640	0.0160	0.0201	0.0128		
th		Gas Reciprocating Engine	2000 KW		9,394			8.80			1,400			0.0152			
1.i		Large - Lean Burn	3000 KW	9,800		9,492	12.60		10.53	1,450		1,130	0.0160		0.0104		
1.j		Large - Lean Burn	5000 KW	8,486		8,758	15.37		15.23	1,450		1,130	0.0140		0.0093		
2 2.a	Gas Turbines	Gas Turbine	1150 KV			16,047			8.31			3,324			0.0112	_	
2.b		Gas Turbine	3000 KW	14,085		10,041	17.841		0.3	2,450		0,024	0.0100		0.0112		
2.0		Gas Turbine	3510 KW		13,893			25.102		1	1,911			0.0098			
2.0		Gas Turbine Recuperated	4600 KW		10,054			14.012			1,369			0.0078	0.007		
2.e		Gas Turbine Gas Turbine	5457 KW 5670 KW	-	12,254	12,312		34.298	28.26		1,279	1,314		0.0065	0.0074		
2.9	1	Gas Turbine	10000 KV	11,765	16,604		46.74			1,520			0.0088				
2.H		Gas Turbine	10239 KW			12,001			49.1			1,298			0.0071		
2.i		Gas Turbine Gas Turbine	25000 KW 40000 KW	9,220		9,945	127.56		90.34	1,170		1,097	0.0050		0.0049		
3	Microturbines	cres r drome	40000 K W	0,220		3,220	127.06		123.21	,170		372	0.0000	·	0.0042		
3.8		Microturbine	30 KW			15,075			0.17			2970			0.015 - 0.025		
3.b		Microturbine	65 KW	13,950	12,943	13,891	0.362		0.41	3,100		2,490	0.0250		0.013 - 0.022		
3.0		Microturbine Microturbine	185 KW 200 KW	12,247	10,670		0.789	0.744		3,000	2,440		0.0220	0.0092			
3.6		Microturbine	250 KW			13,080			1.2		2,110	2,440			0.012 - 0.020		
3.f		Microturbine	925 KW	12,247			3.945			2,900			0.0200				_
4	Fuel Cells	PEM	5KV		9,383			0.0213			15,000			0.0390			
4.a		PEM	10 KW	1	3,383	11,370		0.0213	0.04		10,000	9,100		0.0390			
4.0		SOFC	125 KW			8,024			0.34			NA					
4.0		PEM	200 KW			9,750			0.72			NA					
4.e		PAFC PAFC (2007400)	200 KW 200 KW	9,975		9,480	0.522		0.85	5,000		6,310	\$0.035		0.038		
4.9		MCFC	200 KW	8,022	8,100	8,022	0.622		0.48		7,485	5,580	\$0.035		0.035		
		e Parameters Source D		Source Data		urce Data I		P Type Sum		ost Summar							

Key inputs into the CBA Model – an example (2/5)

CHP Project Level Assumptions	Units	
CHP Technology Type		Gas Turbine
CHP System rated Electric Capacity	kW	1,150
CHP Electric Capacity	kW	1,070
CHP System Availability	%	95%
CHP Hours of Operation	Hrs	8,322
CHP Capacity Factor	%	95%
CHP Economic Life	yrs	20
Project Construction Period	mths	12
CHP Electric Heat Rate	Btu/ kWh	16,047
CHP Thermal Energy Output	MMBtu/ hr	8.31
CHP Capital Cost	\$/kW	3,324
CHP O&M Costs	\$/kWh	0.01
CHP O&M Cost escalation per year	% per yr	2.20%
CHP Incentive	\$/kW	550
Capital Structure, Tax Treatment &		
Returns		
Equity Usage	%	20%
Cost of Equity	%	16%
Debt Usage	%	80%
Cost of Debt	%	10%
Corporate Tax Rate (Marginal)	%	45%
WACC	%	8%
Federal Investment Tax Credit	%	10%
Utility Standby Charges		
Electric Standby Charge (all months)	\$/ kW/ mth	3.52
Electric Standby Charge (summer months)	\$/ kW/ mth	8.38
CHP Outage (in summer month in a year)	days/ yr	1

Electric & Natural Gas Usage - NO CHP		
Facility Annual Peak Demand	kW	2,300
Facility Load Factor	%	60%
Annual Electricity Consumption	MWh/ yr	12,089
Annual Thermal Energy Output from Boiler	MMBtu/ yr	62,240
Boiler Efficiency (No-CHP)	%	80%
Annual Thermal Energy Input (in the Boiler)	MMBtu/ yr	77,800
Electricity Tariff (Commodity + T&D)	\$/ kWh	0.13
Natural Gas Tariff (Commodity + T&D)	\$/ MMBtu	7.91
Natural Gas Tariff (Commodity + T&D) - to CHP (no SUT charged)	\$/ MMBtu	7.39
Electric Tariff escalation (Commodity + T&D)	% per yr	1.98%
NG Tariff escalation (Commodity + T&D)	% per yr	3.20%
Black Start & Islanding Capacbility Assumptions	Units	
Capital Cost Black Start Equip + islanding	\$/ kW	120
Equity Usage	%	20%
Cost of Equity	%	16%
Debt Usage	%	80%
Cost of Debt	%	10%
Corporate Tax Rate (Marginal)	%	45%
	· · · · Ž. · · · · · · · · · · · · · · ·	1
• • • •	Days/ yr	T
Average Grid Outage Period Value of Loss Load	Days/ yr \$/ MWh	ı 5000
Average Grid Outage Period		1 5000 24
Average Grid Outage Period Value of Loss Load	\$/ MWh	

Key Inputs into the CBA Model – quantification of "Reliability Benefits" (3/5)



Key inputs into the CBA Model – illustration of calculations

Cash Flows						
		INSTL.	OPERATING YEAR	R		
Cash Flows (No-CHP)		Yr O	Yr 1	Yr 2	Yr 3	Yrı
Electricity Bill (Commodity + T&D)	\$ mn	(1.57)	(1.60)	(1.63)	(1.67)	
Gas Bill (Commodity + T&D)	\$ mn	(0.62)	(0.64)	(0.66)	(0.68)	
Total	\$ mn	(2.19)	(2.24)	(2.29)	(2.34)	
Cash Flows (CHP)						
Installed Capital Cost without Incentive	\$ mn	(3.82)				
CHP Incentive	\$ mn	0.59				
Installed Capital Cost with Incentive	\$ mn	(3.23)				
Electricity Bill (for purchase from grid) (Commodity + T&D)	\$ mn	(1.57)	(0.42)	(0.43)	(0.44)	
Gas Bill (Commodity + T&D)	\$ mn	(0.62)	(1.09)	(1.12)	(1.16)	
CHP O&M Expenses	\$ mn	0.00	(0.10)	(0.10)	(0.11)	
Electric Standby Charges	\$ mn	0.00	(0.11)	(0.11)	(0.11)	
Total	<u>\$ mn</u>	(5.42)	(1.72)	(1.77)	(1.82)	
Federal Investment Tax Credit	\$ mn	0.32				
Net Savings (due to CHP) to the Owner	\$ mn	(3.23)	0.68	0.68	0.52	
Reliability Benefits						
Capital Costs	\$,000	138.00				
Outage Period	Days	1	1	1	1	
Loss of Load	MWh	25.67	25.67	25.67	25.67	
Value of Loss Load	\$,000	128.34	128.34	128.34	128.34	
Net Benefit: Black Start Equip + islanding	\$,000	(9.66)	128.34	128.34	128.34	
Emissions Reduction Benefits						
Avoided Electricity Purchase (at Generation level)	MWh	-	9,632	9,632	9,632	
Avoided Electric Emissions – CO2	Lbs	-	17,878,568	17,878,568	17,878,568	
Avoided Thermal Emissions – CO2 (Boiler)	Lbs	-	3,550,862	3,550,862	3,550,862	
CHP Emissions – CO2	Lbs	-	16,706,011	16,706,011	16,706,011	
Net Emissions Benefit – due to CHP (reduced CO2)	\$ mn	-	0.09	0.09	0.10	

Key inputs into the CBA Model – illustration of results (5/5)

Total Societal Benefit	\$ mn	\$3.86	
- CHP Project Owner Benefit NPV	\$ mn	\$2.35	61%
- Reliability Benefit (Owner) NPV	\$ mn	\$1.20	31%
- Reliability Benefit (Society) NPV	\$ mn	0	0%
- Emissions Benefit (Society) NPV	\$ mn	\$0.32	8%

Prioritizing between multiple projects/ options for hardening proposed by a given utility

Project 1	С	В	ΔB/ ΔC	Project 3	С	В	ΔB/ ΔC		
1.1 Do Nothing	0	0		1.1 Do Nothing	0	0	-		
1.2 Cheap	20	40	2.00	1.2 Cheap	10	25	2.50		
1.3 Moderate	25	48	1.92	1.3 Moderate	12	40	3.33	Best Option	
1.4 Expensive	30	55	1.83	1.4 Expensive	20	45	2.25		
Project 2	С	В	ΔB/ ΔC	Project 4	С	В	ΔB/ ΔC	-	Set point of each project Cost
1.1 Do Nothing	0	0	-	1.1 Do Nothing	0	0	-	•	Benefit
1.2 Cheap	50	150	3.00 🚽	1.2 Cheap	50	120	-		Marginal Benefit to Cost
1.3 Moderate	60	165	2.75	1.3 Moderate	60	130	1.00		
1.4 Expensive	70	175	2.50	1.4 Expensive	65	150	2.00		

Source: Electric Power Distribution Reliability, Second Edition, Richard E. Brown, CRC Press

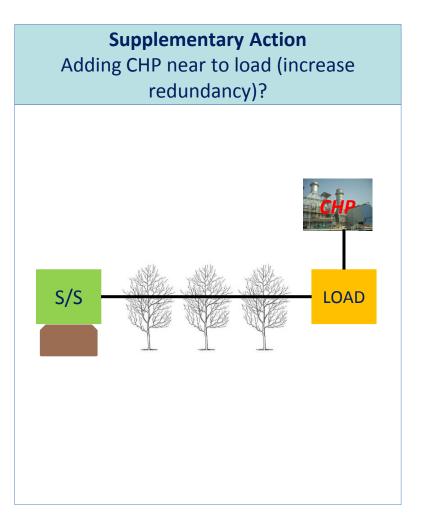
- Marginal Benefit-to-Cost Analysis (MBCA) optimization involves selecting those projects which maximizes the net benefit
- Set point for each project is a "do nothing" option which is assigned zero cost and zero benefit; under some circumstances a project needs to be performed for safety reasons and in that case the set point is the next least expensive option

Prioritizing between multiple projects/ options for hardening proposed by different utilities

Reliability Improvement Project	B/C Ratio (No. of customers x Minutes improvement in SAIDI ÷ dollars)					
	Utility A	Utility B	Utility C			
Tree Trimming Modifications	-	-	142.9			
Faulted Circuit Indicators	100.0	76.9	100.0			
SCADA with Breaker Control	20.0	-	20.0			
Infrared Feeder Inspection	1.5	1.5	1.5			
URD Cable Replacement	1.5	-	0.7			
Reclosers and Sectionalizers	1.1	1.0	-			
Lightning Protection	0.8	0.8	0.8			
Sectionalizing Switches	-	0.5	-			
Feeder Automation	-	0.2	-			

Source: Electric Power Distribution Reliability, Second Edition, Richard E. Brown, CRC Press

Measure and compare 'Incremental Costs' versus 'Incremental Benefits'


Incremental Benefit Calculation

Inc. Benefit = Change in Reliability $(R_N - R_O)$ x Interruption Minutes x No. of Customers x VOLL (\$) Change in Reliability $(R_N - R_O) = 0.0001$

Measures may be 'complementary' or 'competitive' actions

Complementary Action Substation elevation coupled with tree trimming on a radial line S/S LOAD

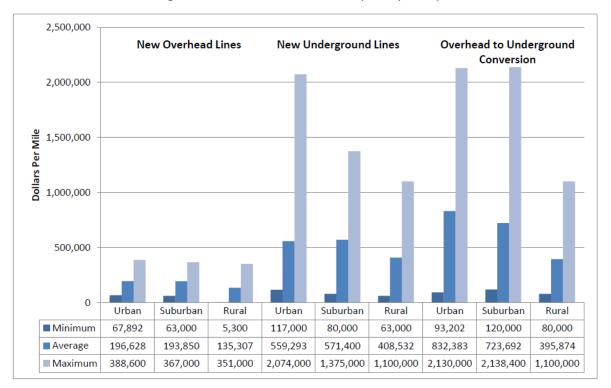
Utility Hardening: Economic Efficiency and CBA

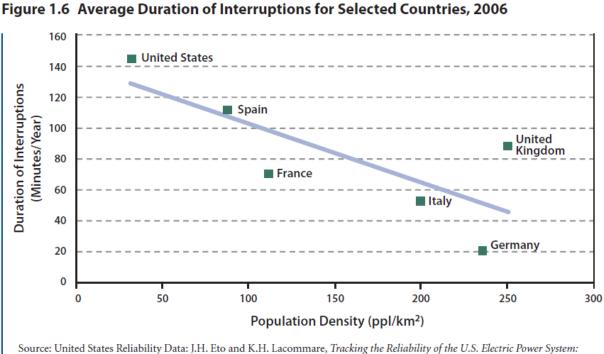
- Integration of CBA with reliability and resiliency analysis
- Dealing with uncertainties during CBA
- Examples of CBA of hardening options
- Data collection challenges and issues

Key questions

- What data sets are available?
- Should each utility prepare hardening plan individually or should a region (PJM) or state (NJ) have an integrated plan?
- When should the planning take place and for how long in future?
- Can all benefits be quantified (for e.g. increased aesthetics of a community as a result of undergrounding of wires)?

Hardening costs vary widely even for a given measure




Figure 16 - Cost of Distribution Power Lines (Dollars per Mile)

Source: Edison Electric Institute, Out of Sight, Out of Mind Revisited, December 2009

Source: Edison Electric Institute, Out of Sight, Out of Mind Revisited, December 2009

Rutgers

Data interpretation is equally important as is data availability

Source: United States Reliability Data: J.H. Eto and K.H. Lacommare, *Tracking the Reliability of the U.S. Electric Power System:* An Assessment of Publicly Available Information Reported to State Public Utility Commissions (Berkleley, CA: Lawrence Berkeley National Laboratory, 2008); European Reliability Data: Council of European Energy Regulators, 4th Benchmarking Report on *Quality of Electricity Supply 2008* (Brussels, Belgium, 2008); Population Density: World Bank Development Indicators.

Summary

- Need more data
- Need better models
- Need better integration of engineering and economic models
- □ Need to formally treat uncertainty
- Nonetheless, CBA provides useful but not dispositive analysis
- □ Reliability and resiliency is a long-term, iterative process